Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of tanxtan3x\frac{\tan \, x}{\tan \, 3x} wherever defined never lies between

A

12\frac{1}{2} and 2

B

13\frac{1}{3} and 3

C

14\frac{1}{4} and 4

D

13\frac{1}{3} and 2

Answer

13\frac{1}{3} and 3

Explanation

Solution

Let y=tanxtan3xy = \frac{\tan x}{\tan3x} y=tanx(3tanxtan3x13tan2x)=13tan2x3tan2x \Rightarrow y = \frac{\tan x}{\left(\frac{3\tan x - \tan^{3}x}{1-3 \tan^{2}x}\right) } = \frac{1- 3 \tan^{2}x}{3-\tan^{2} x} 3yytan2x=13tan2x\Rightarrow 3y - y \tan^{2} x = 1 - 3 \tan^{2} x (y3)tan2x+(13y)=0\Rightarrow \left(y -3\right) \tan^{2} x+\left(1-3y\right) = 0 tan2x=3y1y3\Rightarrow \tan^{2} x = \frac{3y-1}{y-3} For tan x to be real 3y1y30\frac{3y-1}{y-3} \ge0 (3y1)(y3)0 \Rightarrow \left(3y -1\right)\left(y-3\right) \ge 0 and y3 y \ne3 y13 \Rightarrow y \le \frac{1}{3} or y>3 y >3