Question
Mathematics Question on Trigonometric Functions
The value of tan3xtanx wherever defined never lies between
A
21 and 2
B
31 and 3
C
41 and 4
D
31 and 2
Answer
31 and 3
Explanation
Solution
Let y=tan3xtanx ⇒y=(1−3tan2x3tanx−tan3x)tanx=3−tan2x1−3tan2x ⇒3y−ytan2x=1−3tan2x ⇒(y−3)tan2x+(1−3y)=0 ⇒tan2x=y−33y−1 For tan x to be real y−33y−1≥0 ⇒(3y−1)(y−3)≥0 and y=3 ⇒y≤31 or y>3