Question
Mathematics Question on Exponential and Logarithmic Functions
The value of dxd[xnlogaxex] is
exlogax+logeaxn−1
{{e}^{x}}{{x}^{n-1}}\,\left\\{ x{{\log }_{a}}\,x+\frac{1}{{{\log }_{e}}\,a}+n\,{{\log }_{a}}x \right\\}
nxn−1logaxex
xnlogax.ex
{{e}^{x}}{{x}^{n-1}}\,\left\\{ x{{\log }_{a}}\,x+\frac{1}{{{\log }_{e}}\,a}+n\,{{\log }_{a}}x \right\\}
Solution
dxd[xn.logax.ex]
=xn.dxdlogax.ex+logax.exdxd(xn)
={{x}^{n}}\left\\{ {{\log }_{a}}x.\frac{d}{dx}\,{{e}^{x}}+{{e}^{x}}\frac{d}{dx}{{\log }_{a}}x \right\\}
+exlogax.nxn−1
={{x}^{n}}\left\\{ {{e}^{x}}\,{{\log }_{a}}\,x+\frac{{{e}^{x}}}{x}.\frac{1}{{{\log }_{e}}a} \right\\}
+nxn−1.exlogax
={{x}^{n-1}}\,{{e}^{x}}\left\\{ x\,{{\log }_{a}}x+\frac{1}{{{\log }_{e}}\,a} \right\\}+n{{x}^{n-1}}.{{e}^{x}}\,{{\log }_{a}}x
={{x}^{n-1}}\,.\,{{e}^{x}}\left\\{ x\,{{\log }_{a}}x+\frac{1}{{{\log }_{e}}\,a}+n\,{{\log }_{a}}x \right\\}