Solveeit Logo

Question

Mathematics Question on Exponential and Logarithmic Functions

The value of ddx[xnlogaxex]\frac{d}{dx}[{{x}^{n}}\,{{\log }_{a}}\,x{{e}^{x}}] is

A

exlogax+xn1logea{{e}^{x}}\,{{\log }_{a}}\,x+\frac{{{x}^{n-1}}}{{{\log }_{e}}\,a}

B

{{e}^{x}}{{x}^{n-1}}\,\left\\{ x{{\log }_{a}}\,x+\frac{1}{{{\log }_{e}}\,a}+n\,{{\log }_{a}}x \right\\}

C

nxn1logaxexn{{x}^{n-1}}\,{{\log }_{a}}\,x{{e}^{x}}

D

xnlogax.ex{{x}^{n}}\,{{\log }_{a}}x.{{e}^{x}}

Answer

{{e}^{x}}{{x}^{n-1}}\,\left\\{ x{{\log }_{a}}\,x+\frac{1}{{{\log }_{e}}\,a}+n\,{{\log }_{a}}x \right\\}

Explanation

Solution

ddx[xn.logax.ex]\frac{d}{dx}[{{x}^{n}}.{{\log }_{a}}x.{{e}^{x}}]
=xn.ddxlogax.ex+logax.exddx(xn)={{x}^{n}}.\frac{d}{dx}\\{{{\log }_{a}}\,x.{{e}^{x}}\\}+{{\log }_{a}}\,x.{{e}^{x}}\frac{d}{dx}({{x}^{n}})
={{x}^{n}}\left\\{ {{\log }_{a}}x.\frac{d}{dx}\,{{e}^{x}}+{{e}^{x}}\frac{d}{dx}{{\log }_{a}}x \right\\}
+exlogax.nxn1+{{e}^{x}}\,{{\log }_{a}}\,x.n{{x}^{n-1}}
={{x}^{n}}\left\\{ {{e}^{x}}\,{{\log }_{a}}\,x+\frac{{{e}^{x}}}{x}.\frac{1}{{{\log }_{e}}a} \right\\}
+nxn1.exlogax+n{{x}^{n-1}}.{{e}^{x}}{{\log }_{a}}\,x
={{x}^{n-1}}\,{{e}^{x}}\left\\{ x\,{{\log }_{a}}x+\frac{1}{{{\log }_{e}}\,a} \right\\}+n{{x}^{n-1}}.{{e}^{x}}\,{{\log }_{a}}x
={{x}^{n-1}}\,.\,{{e}^{x}}\left\\{ x\,{{\log }_{a}}x+\frac{1}{{{\log }_{e}}\,a}+n\,{{\log }_{a}}x \right\\}