Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of cosθ1+sinθ\frac{\cos\theta}{1+ \sin\theta} is equal to

A

tan(θ2π4)\tan\left(\frac{\theta}{2} - \frac{\pi}{4}\right)

B

tan(π4θ2)\tan\left( - \frac{\pi}{4}- \frac{\theta}{2} \right)

C

tan(π4θ2)\tan\left( \frac{\pi}{4}- \frac{\theta}{2} \right)

D

tan(π4+θ2)\tan\left( \frac{\pi}{4} + \frac{\theta}{2} \right)

Answer

tan(π4θ2)\tan\left( \frac{\pi}{4}- \frac{\theta}{2} \right)

Explanation

Solution

cosθ1+sinθ=sin(π2θ)1+cos(π2θ)\frac{\cos\theta}{1+ \sin\theta} = \frac{ \sin\left(\frac{\pi}{2} - \theta\right)}{1 + \cos \left(\frac{\pi}{2} - \theta\right)}
=2sin(π4θ2)cos(π4θ2)2cos2(π4θ2)= \frac{2 \sin\left( \frac{\pi}{4} - \frac{\theta}{2}\right)\cos \left(\frac{\pi}{4} - \frac{\theta}{2}\right)}{2 \cos^{2} \left(\frac{\pi}{4} - \frac{\theta}{2}\right)}
=sin(π4θ2)cos(π4θ2)= \frac{\sin\left(\frac{\pi}{4} - \frac{\theta}{2}\right)}{\cos\left(\frac{\pi}{4} - \frac{\theta}{2}\right)}
=tan(π4θ2)= \tan \left(\frac{\pi}{4} - \frac{\theta}{2}\right)
cosθ1+sinθ\frac{\cos \theta}{1+\sin \theta}
=(cos2θ/2sin2θ/2)(sin2θ/2+cos2θ/2)+2sinθ/2+cosθ/2=\frac{\left(\cos ^{2} \theta / 2-\sin ^{2} \theta / 2\right)}{\left(\sin ^{2} \theta / 2+\cos ^{2} \theta / 2\right)+2 \sin \theta / 2+\cos \theta / 2}
=(cosθ/2+sinθ/2)(cosθ/2sinθ/2)(cosθ/2+sinθ/2)2=\frac{(\cos \theta / 2+\sin \theta / 2)(\cos \theta / 2-\sin \theta / 2)}{(\cos \theta / 2+\sin \theta / 2)^{2}}
=1tanθ/21+tanθ/2=\frac{1-\tan \theta / 2}{1+\tan \theta / 2}
=tanπ/4tanθ/21+tanπ/4tanθ/2=\frac{\tan \pi / 4-\tan \theta / 2}{1+\tan \pi / 4 \cdot \tan \theta / 2}
=tan(π4θ2)=\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)