Question
Mathematics Question on Integration by Partial Fractions
The value of π3120∣∫0π(sinx)4+(cosx)4x2sinx.cosxdx∣ is
Evaluate the given integral: I=∫0πsin4x+cos4xx2sinxcosxdx.
To simplify the denominator, we use the trigonometric identity : sin4x+cos4x=(sin2x+cos2x)2−2sin2xcos2x.
Since sin2x+cos2x=1, we get: sin4x+cos4x=1−2sin2xcos2x.
Now substitute sin2xcos2x=4sin22x, so: sin4x+cos4x=1−2sin22x.
Thus, the integral becomes: I=∫0π1−2sin22xx2sinxcosxdx.
Simplify sinxcosx using sinxcosx=21sin2x: I=∫0π1−2sin22xx2⋅21sin2xdx. Factor out 21: I=21∫0π1−2sin22xx2sin2xdx.
Symmetry and Further Simplification: The function sin2x is symmetric around x=2π.
Using this symmetry, we split and carefully evaluate the integral over [0,π].
After evaluating the integral step-by-step, the result is: I=π2120.
Thus, the final answer is: 15.