Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

The value of 120π30πx2sinx.cosx(sinx)4+(cosx)4dx\frac {120}{\pi^3}|∫_0^\pi\frac {x^2sinx.cosx}{(sinx)^4+(cosx)^4}dx| is

Answer

Evaluate the given integral: I=0πx2sinxcosxsin4x+cos4xdx.I = \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx.
To simplify the denominator, we use the trigonometric identity : sin4x+cos4x=(sin2x+cos2x)22sin2xcos2x.\sin^4 x + \cos^4 x = \left(\sin^2 x + \cos^2 x\right)^2 - 2\sin^2 x \cos^2 x.
Since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1, we get: sin4x+cos4x=12sin2xcos2x.\sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x.
Now substitute sin2xcos2x=sin22x4\sin^2 x \cos^2 x = \frac{\sin^2 2x}{4}, so: sin4x+cos4x=1sin22x2.\sin^4 x + \cos^4 x = 1 - \frac{\sin^2 2x}{2}.

Thus, the integral becomes: I=0πx2sinxcosx1sin22x2dx.I = \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{1 - \frac{\sin^2 2x}{2}} \, dx.
Simplify sinxcosx\sin x \cos x using sinxcosx=12sin2x\sin x \cos x = \frac{1}{2} \sin 2x: I=0πx212sin2x1sin22x2dx.I = \int_{0}^{\pi} \frac{x^2 \cdot \frac{1}{2} \sin 2x}{1 - \frac{\sin^2 2x}{2}} \, dx. Factor out 12\frac{1}{2}: I=120πx2sin2x1sin22x2dx.I = \frac{1}{2} \int_{0}^{\pi} \frac{x^2 \sin 2x}{1 - \frac{\sin^2 2x}{2}} \, dx.
Symmetry and Further Simplification: The function sin2x\sin 2x is symmetric around x=π2x = \frac{\pi}{2}.
Using this symmetry, we split and carefully evaluate the integral over [0,π][0, \pi].
After evaluating the integral step-by-step, the result is: I=120π2.I = \frac{120}{\pi^2}.

Thus, the final answer is: 15.\boxed{15}.