Question
Mathematics Question on Sequences and Series
The value of 12×2+22×3+⋯+1002×1011×22+2×32+⋯+100×(101)2 is:
A
305306
B
301305
C
3132
D
3031
Answer
301305
Explanation
Solution
We are asked to evaluate the expression:
12×22+22×32+⋯+1002×1011×22+2×32+⋯+100×(101)2.
This can be rewritten as:
∑r=1100r2(r+1)∑r=1100r(r+1)2.
Now, expand both the numerator and denominator:
Numerator: ∑r=1100r(r+1)2=∑r=1100r(r2+2r+1)=∑r=1100(r3+2r2+r). Denominator: ∑r=1100r2(r+1)=∑r=1100(r3+r2).
We now need to compute these sums:
∑r=1100r3=(2100(100+1))2=25502500. ∑r=1100r2=6100(100+1)(2×100+1)=338350.
Using these values, we can calculate:
Numerator: 25502500+2×338350+5050=51851000. Denominator: 25502500+338350=25840850.
Thus, the value of the expression is:
2584085051851000=301305.