Solveeit Logo

Question

Mathematics Question on Sequences and Series

The value of 1×22+2×32++100×(101)212×2+22×3++1002×101\frac{1 \times 2^2 + 2 \times 3^2 + \dots + 100 \times (101)^2}{1^2 \times 2 + 2^2 \times 3 + \dots + 100^2 \times 101} is:

A

306305\frac{306}{305}

B

305301\frac{305}{301}

C

3231\frac{32}{31}

D

3130\frac{31}{30}

Answer

305301\frac{305}{301}

Explanation

Solution

We are asked to evaluate the expression:

1×22+2×32++100×(101)212×22+22×32++1002×101.\frac{1 \times 2^2 + 2 \times 3^2 + \cdots + 100 \times (101)^2}{1^2 \times 2^2 + 2^2 \times 3^2 + \cdots + 100^2 \times 101}.

This can be rewritten as:

r=1100r(r+1)2r=1100r2(r+1).\frac{\sum_{r=1}^{100} r(r+1)^2}{\sum_{r=1}^{100} r^2(r+1)}.

Now, expand both the numerator and denominator:

Numerator: r=1100r(r+1)2=r=1100r(r2+2r+1)=r=1100(r3+2r2+r).\sum_{r=1}^{100} r(r+1)^2 = \sum_{r=1}^{100} r(r^2 + 2r + 1) = \sum_{r=1}^{100} (r^3 + 2r^2 + r). Denominator: r=1100r2(r+1)=r=1100(r3+r2).\sum_{r=1}^{100} r^2(r+1) = \sum_{r=1}^{100} (r^3 + r^2).

We now need to compute these sums:

r=1100r3=(100(100+1)2)2=25502500.\sum_{r=1}^{100} r^3 = \left(\frac{100(100+1)}{2}\right)^2 = 25502500. r=1100r2=100(100+1)(2×100+1)6=338350.\sum_{r=1}^{100} r^2 = \frac{100(100+1)(2 \times 100+1)}{6} = 338350.

Using these values, we can calculate:

Numerator: 25502500+2×338350+5050=51851000.25502500 + 2 \times 338350 + 5050 = 51851000. Denominator: 25502500+338350=25840850.25502500 + 338350 = 25840850.

Thus, the value of the expression is:

5185100025840850=305301.\frac{51851000}{25840850} = \frac{305}{301}.