Solveeit Logo

Question

Mathematics Question on Algebra of Complex Numbers

The value of 1i+1i2+1i3++1i102\frac{1}{i}+\frac{1}{i^{2}}+\frac{1}{i^{3}}+\cdots+\frac{1}{i^{102}} is

A

1i-1 - i

B

1+i1 + i

C

1i1 - i

D

1+2i1 + 2i

Answer

1i-1 - i

Explanation

Solution

1i+1i2+1i3++1i102\frac{1}{i}+\frac{1}{i^{2}}+\frac{1}{i^{3}}+\ldots+\frac{1}{i^{102}}
\therefore\, S_{n}=\frac{\frac{1}{i}\left\\{1-\left(\frac{1}{i}\right)^{102}\right\\}}{1-\left(\frac{1}{i}\right)}=\frac{(1+1)}{i-1}
(i4=1  and i2=1)\begin{pmatrix}\because i^{4}=1 \\\ \text { and } i^{2}=-1\end{pmatrix}
=2(i+1)i21=(i+1)=1i=\frac{2(i+1)}{i^{2}-1}=-(i+1)=-1-i