Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of 18(34 cos 2θ+cos 4θ)\frac{1}{8}(3-4\text{ }cos\text{ }2\theta +cos\text{ }4\theta ) is

A

cos4θ\cos 4\theta

B

sin4θ\sin 4\theta

C

sin4θ{{\sin }^{4}}\theta

D

cos4θ{{\cos }^{4}}\theta

Answer

sin4θ{{\sin }^{4}}\theta

Explanation

Solution

Given :
18(34cos2θ+cos4θ)\frac{1}{8}(3-4\cos 2\theta +\cos 4\theta )
\Rightarrow 1833cos2θ+(cos4θcos2θ)\frac{1}{8}\\{3-3\cos 2\theta +(\cos 4\theta -\cos 2\theta )\\}
=\frac{1}{8}\left\\{ 3(1-\cos 2\theta )+2\sin \left( \frac{2\theta -4\theta }{2} \right).\sin \left( \frac{6\theta }{2} \right) \right\\}
=186sin2θ2sinθ.sin3θ=\frac{1}{8}\\{6{{\sin }^{2}}\theta -2\sin \theta .\sin 3\theta \\}
=186sin2θ2sinθ(3sinθ4sin3θ)=\frac{1}{8}\\{6{{\sin }^{2}}\theta -2\sin \theta (3\sin \theta -4{{\sin }^{3}}\theta )\\}
=186sin2θ6sin2θ+8sin4θ=sin4θ=\frac{1}{8}\\{6{{\sin }^{2}}\theta -6{{\sin }^{2}}\theta +8{{\sin }^{4}}\theta \\}={{\sin }^{4}}\theta
So, the correct option is (C) : sin4θ{{\sin }^{4}}\theta