Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of 11!50!+13!48!+15!46!++149!2!+151!1!\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots +\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !} is :

A

25150!\frac{2^{51}}{50 !}

B

25050!\frac{2^{50}}{50 !}

C

25151!\frac{2^{51}}{51 !}

D

25051!\frac{2^{50}}{51 !}

Answer

25051!\frac{2^{50}}{51 !}

Explanation

Solution

r=1261(2r1)!(51(2r1))!∑_{r=1}^{26} ​\frac{1}{(2r−1)!(51−(2r−1))!} ​

=r=12651C(2r1)151!= ∑_{r=1}^{26} ​^{51}C_{(2r−1)} \frac{1}{51!}

=151!51C1+51C3+.+51C51=151!(250)=\frac{1}{51!} {^{51}C_1 + ^{51}C_3 ​+….+ ^{51}C_{51}}= \frac{1}{51!} (2^{50})

=(25051!)= (\frac{2^{50}}{51!} )

Therefore, The correct answer is option (D): 25051!\frac{2^{50}}{51!}