Solveeit Logo

Question

Question: The value of following trigonometric expression \[[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\...

The value of following trigonometric expression [cos4Asin4A[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}] is equal to:
A. 2cos2A{\cos ^2}{\text{A}}+1
B. 2cos2A{\cos ^2}{\text{A}}−1
C. 2sin2A{\sin ^2}{\text{A}}−1
D. 2sin2A{\sin ^2}{\text{A}}+1

Explanation

Solution

Hint- Proceed the solution of this question, fist identify that there is even power on trigonometric terms so that we can factorise this using available algebraic identity using the difference of square which states as (a2b2{{\text{a}}^2} - {{\text{b}}^2}) = (a+b)(a-b).

Complete step by step answer:
So, by given equation can be written as
(cos2A)2(sin2A)2{\left( {{\text{co}}{{\text{s}}^2}{\text{A}}} \right)^2} - {\left( {{{\sin }^2}{\text{A}}} \right)^2}
So on comparing this with the identity difference of square, (a2b2{{\text{a}}^2} - {{\text{b}}^2}) = (a+b)(a-b)
{\text{a = co}}{{\text{s}}^2}{\text{A & b = si}}{{\text{n}}^2}{\text{A}}
So applying identity we get
cos4Asin4A{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}} = (cos2Asin2A)(cos2A + sin2A)\left( {{\text{co}}{{\text{s}}^2}{\text{A}} - {{\sin }^2}{\text{A}}} \right)\left( {{\text{co}}{{\text{s}}^2}{\text{A + }}{{\sin }^2}{\text{A}}} \right)…….(1)
Since we know that cos2A + sin2A = 1{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}
So on putting cos2A + sin2A = 1{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}} in equation (1)
cos4Asin4A{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}= cos2Asin2A{\text{co}}{{\text{s}}^2}{\text{A}} - {\sin ^2}{\text{A}}
Now we know that cos2A + sin2A = 1{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}, which can be written as sin2A = 1 - cos2A{\sin ^2}{\text{A = 1 - co}}{{\text{s}}^2}{\text{A}}

cos4Asin4A{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}= cos2A(1cos2A){\text{co}}{{\text{s}}^2}{\text{A}} - (1 - {\text{co}}{{\text{s}}^2}{\text{A}})
On further solving
cos2A(1cos2A){\text{co}}{{\text{s}}^2}{\text{A}} - (1 - {\text{co}}{{\text{s}}^2}{\text{A}}) = cos2A1+cos2A = 2cos2A - 1{\text{co}}{{\text{s}}^2}{\text{A}} - 1 + {\text{co}}{{\text{s}}^2}{\text{A = 2co}}{{\text{s}}^2}{\text{A - 1}}
cos4Asin4A{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}  = 2cos2A - 1{\text{ = 2co}}{{\text{s}}^2}{\text{A - 1}}

Hence, the option B , 2cos2A{\cos ^2}{\text{A}}−1 is the correct answer.

Note: There is also an alternative approach to solve this question-
Since we know that cos2A + sin2A = 1{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}
which can be written as sin2A = 1 - cos2A{\sin ^2}{\text{A = 1 - co}}{{\text{s}}^2}{\text{A}}
So replacing the sin2{\sin ^2}{\text{A }} term by 1 - cos2A{\text{1 - co}}{{\text{s}}^2}{\text{A}} in the above question
cos4A(1cos2A)2\Rightarrow {\text{co}}{{\text{s}}^4}{\text{A}} - {\left( {1 - {{\cos }^2}{\text{A}}} \right)^2}
cos4A(cos4A+12cos2A)\Rightarrow {\text{co}}{{\text{s}}^4}{\text{A}} - \left( {{\text{co}}{{\text{s}}^4}{\text{A}} + 1 - 2{{\cos }^2}{\text{A}}} \right)
cos4Acos4A - 1+2cos2A\Rightarrow {\text{co}}{{\text{s}}^4}{\text{A}} - {\text{co}}{{\text{s}}^4}{\text{A - }}1 + 2{\cos ^2}{\text{A}}
On further solving
 = 2cos2A - 1{\text{ = 2co}}{{\text{s}}^2}{\text{A - 1}}