Solveeit Logo

Question

Question: The value of f(0) so that the function \(f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \rig...

The value of f(0) so that the function f(x)=log(1+x2tanx)sinx3,x=0f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}},x=0 continuous at x=0x=0 , is
(a) 1
(b) 0
(c) 2
(d) -1

Explanation

Solution

To find value of f(0) when the function f(x)=log(1+x2tanx)sinx3f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}} is continuous at x=0x=0 , we will use the rule that a function is continuous at x=cx=c if f(c)=limxcf(x)f\left( c \right)=\displaystyle \lim_{x \to c}f\left( x \right) .
We will substitute x=0x=0 in this rule and find the limits. If the limit is in 00\dfrac{0}{0} form , then we will have to use L-Hospital’s rule.

Complete step by step solution:
We have to find the value of f(0) so that the function f(x)=log(1+x2tanx)sinx3f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}} continuous at x=0x=0 . We know that a function is continuous at x=cx=c if
f(c)=limxcf(x)f\left( c \right)=\displaystyle \lim_{x \to c}f\left( x \right)
We are given that f(x)=log(1+x2tanx)sinx3f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}} is continuous at x=0x=0 . Then, we can write
f(0)=limx0log(1+x2tanx)sinx3f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}
Let us apply the limit. We know that limx0f(x)g(x)=limx0f(x)limx0g(x)\displaystyle \lim_{x \to 0}\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{\displaystyle \lim_{x \to 0}f\left( x \right)}{\displaystyle \lim_{x \to 0}g\left( x \right)}
f(0)=log(1+0tan0)sin0 f(0)=log(1)sin0=00 \begin{aligned} & \Rightarrow f\left( 0 \right)=\dfrac{\log \left( 1+0\cdot \tan 0 \right)}{\sin 0} \\\ & \Rightarrow f\left( 0 \right)=\dfrac{\log \left( 1 \right)}{\sin 0}=\dfrac{0}{0} \\\ \end{aligned}
We obtained the limit as 00\dfrac{0}{0} form which is an indeterminate form. Thus, we have to use L-Hospital’s rule. This rule states that
limxcp(x)q(x)=limxcp(x)q(x)\displaystyle \lim_{x \to c}\dfrac{p\left( x \right)}{q\left( x \right)}=\displaystyle \lim_{x \to c}\dfrac{p'\left( x \right)}{q'\left( x \right)}
The given function is of the above form. Thus, we have to differentiate the numerator and denominator.
Let us consider the limit as
f(0)=limx0log(1+x2tanx)sinx3=limx0p(x)q(x) f(0)=limx0p(x)q(x)...(i) \begin{aligned} & f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}=\displaystyle \lim_{x \to 0}\dfrac{p\left( x \right)}{q\left( x \right)} \\\ & \Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{p'\left( x \right)}{q'\left( x \right)}...\left( i \right) \\\ \end{aligned}
Here, p(x)=log(1+x2tanx)p\left( x \right)=\log \left( 1+{{x}^{2}}\tan x \right) . Let us differentiate this function with respect to x.
We know that ddx(logx)=1x\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x} . Also, we will have to apply chain rule.
p(x)=11+x2tanx×ddx(1+x2tanx) p(x)=11+x2tanx×[ddx(1)+ddx(x2tanx)] \begin{aligned} & \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \dfrac{d}{dx}\left( 1+{{x}^{2}}\tan x \right) \\\ & \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ \dfrac{d}{dx}\left( 1 \right)+\dfrac{d}{dx}\left( {{x}^{2}}\tan x \right) \right] \\\ \end{aligned}
We know that the derivative of a constant is 0.
p(x)=11+x2tanx×[0+ddx(x2tanx)] p(x)=11+x2tanx×ddx(x2tanx) \begin{aligned} & \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ 0+\dfrac{d}{dx}\left( {{x}^{2}}\tan x \right) \right] \\\ & \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \dfrac{d}{dx}\left( {{x}^{2}}\tan x \right) \\\ \end{aligned}
Now, let us apply the product rule.
p(x)=11+x2tanx×[x2ddx(tanx)+tanxddx(x2)]\Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ {{x}^{2}}\dfrac{d}{dx}\left( \tan x \right)+\tan x\dfrac{d}{dx}\left( {{x}^{2}} \right) \right]
We know that ddxtanx=sec2x\dfrac{d}{dx}\tan x={{\sec }^{2}}x and ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} .
p(x)=11+x2tanx×[x2sec2x+2xtanx] p(x)=x2sec2x+2xtanx1+x2tanx...(ii) \begin{aligned} & \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ {{x}^{2}}{{\sec }^{2}}x+2x\tan x \right] \\\ & \Rightarrow p'\left( x \right)=\dfrac{{{x}^{2}}{{\sec }^{2}}x+2x\tan x}{1+{{x}^{2}}\tan x}...\left( ii \right) \\\ \end{aligned}
Now, let us consider the denominator of the given function to be q(x)q\left( x \right) .
q(x)=sinx3\Rightarrow q\left( x \right)=\sin {{x}^{3}}
Let us differentiate the above function with respect to x. For this, we will have to use chain rule. We know that ddxsinx=cosx\dfrac{d}{dx}\sin x=\cos x .
q(x)=cosx×ddxx3\Rightarrow q'\left( x \right)=\cos x\times \dfrac{d}{dx}{{x}^{3}}
We know that ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} . Therefore, the above derivative becomes
q(x)=3x2cosx...(iii)\Rightarrow q'\left( x \right)=3{{x}^{2}}\cos x...\left( iii \right)
Now, let us substitute (ii) and (iii) in (i).
f(0)=limx0x2sec2x+2xtanx1+x2tanx3x2cosx f(0)=limx0x2sec2x+2xtanx(1+x2tanx)3x2cosx \begin{aligned} & \Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{\dfrac{{{x}^{2}}{{\sec }^{2}}x+2x\tan x}{1+{{x}^{2}}\tan x}}{3{{x}^{2}}\cos x} \\\ & \Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{x}^{2}}{{\sec }^{2}}x+2x\tan x}{\left( 1+{{x}^{2}}\tan x \right)3{{x}^{2}}\cos x} \\\ \end{aligned}
Let us take x2{{x}^{2}} outside from the numerator.
f(0)=limx0x2(sec2x+2tanxx)(1+x2tanx)3x2cosx\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{x}^{2}}\left( {{\sec }^{2}}x+2\cdot \dfrac{\tan x}{x} \right)}{\left( 1+{{x}^{2}}\tan x \right)3{{x}^{2}}\cos x}
We can now cancel x2{{x}^{2}} from the numerator and denominator.
f(0)=limx0sec2x+2tanxx(1+x2tanx)3cosx\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{\sec }^{2}}x+2\cdot \dfrac{\tan x}{x}}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}
We can write the above limit as
f(0)=limx0[sec2x(1+x2tanx)3cosx+2tanxx(1+x2tanx)3cosx]\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\left[ \dfrac{{{\sec }^{2}}x}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}+\dfrac{2\cdot \dfrac{\tan x}{x}}{\left( 1+{{x}^{2}}\tan x \right)3\cos x} \right]
We know that limxc[f(x)+g(x)]=limxcf(x)+limxcg(x)\displaystyle \lim_{x \to c}\left[ f\left( x \right)+g\left( x \right) \right]=\displaystyle \lim_{x \to c}f\left( x \right)+\displaystyle \lim_{x \to c}g\left( x \right) .
f(0)=limx0sec2x(1+x2tanx)3cosx+limx02tanxx(1+x2tanx)3cosx\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{\sec }^{2}}x}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}+\displaystyle \lim_{x \to 0}\dfrac{2\cdot \dfrac{\tan x}{x}}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}
We can write the above limit as
f(0)=limx0sec2xlimx0(1+x2tanx)3cosx+2limx0tanxxlimx0(1+x2tanx)3cosx\Rightarrow f\left( 0 \right)=\dfrac{\displaystyle \lim_{x \to 0}{{\sec }^{2}}x}{\displaystyle \lim_{x \to 0}\left( 1+{{x}^{2}}\tan x \right)3\cos x}+\dfrac{2\cdot \displaystyle \lim_{x \to 0}\dfrac{\tan x}{x}}{\displaystyle \lim_{x \to 0}\left( 1+{{x}^{2}}\tan x \right)3\cos x}
Let us apply the limits. We know that limx0tanxx=1\displaystyle \lim_{x \to 0}\dfrac{\tan x}{x}=1 .

& \Rightarrow f\left( 0 \right)=\dfrac{{{\sec }^{2}}0}{\left( 1+0\cdot \tan 0 \right)3\cos 0}+\dfrac{2\times 1}{\left( 1+0\cdot \tan 0 \right)3\cos 0} \\\ & \Rightarrow f\left( 0 \right)=\dfrac{1}{1\times 3\times 1}+\dfrac{2}{1\times 3\times 1} \\\ & \Rightarrow f\left( 0 \right)=\dfrac{1+2}{1\times 3\times 1}=\dfrac{3}{3}=1 \\\ \end{aligned}$$ Therefore, the value of $f\left( 0 \right)$ is 1. **So, the correct answer is “Option A”.** **Note:** Students must read the values carefully as they may misunderstand $\sin {{x}^{3}}$ as ${{\sin }^{3}}x$ . They must know the derivatives of basic functions and the properties of the derivatives. They should also know the properties of limits and L'Hospital's rule. We took ${{x}^{2}}$ outside from the numerator because when we apply the limits before doing this, again the limit will be of the indeterminate form.