Solveeit Logo

Question

Mathematics Question on Differentiability

The value of f(0)f(0) so that (ex+2x)x\frac{\left(-e^{x} +2^{x}\right)}{x}may be continuous at x=0x = 0 is

A

log(12)log\left(\frac{1}{2}\right)

B

0

C

4

D

- 1 + log 2

Answer

- 1 + log 2

Explanation

Solution

f(x)=ex+2xxf \left(x\right)=\frac{-e^{x} + 2^{x}}{x}
=1x[(1+x1!+x22!+x33!+..)+1+log21!x+(bg2)22!x2+(log2)33!x3+..]=\frac{1}{x}\left[-\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+..\right)+1+\frac{log 2}{1!}x+\frac{\left(bg 2\right)^{2}}{2!}x^{2}+\frac{\left(log 2\right)^{3}}{3!}x^{3}+..\right]
f \left(x\right)=log 2-1+\frac{x}{2!}\left\\{\left(log 2\right)^{2} -\right\\} +\frac{x^{2}}{3!}\left\\{\left(log^{2}\right)^{3}-1\right\\}+....
Putting x=0x = 0, we get
f(0)=log21+0+0+....=1+log2.f\left(0\right) = log 2 - 1 + 0 + 0 + .... = - 1 + log \,2.