Question
Mathematics Question on Differentiability
The value of f(0) so that x(−ex+2x)may be continuous at x=0 is
A
log(21)
B
0
C
4
D
- 1 + log 2
Answer
- 1 + log 2
Explanation
Solution
f(x)=x−ex+2x
=x1[−(1+1!x+2!x2+3!x3+..)+1+1!log2x+2!(bg2)2x2+3!(log2)3x3+..]
f \left(x\right)=log 2-1+\frac{x}{2!}\left\\{\left(log 2\right)^{2} -\right\\}
+\frac{x^{2}}{3!}\left\\{\left(log^{2}\right)^{3}-1\right\\}+....
Putting x=0, we get
f(0)=log2−1+0+0+....=−1+log2.