Solveeit Logo

Question

Question: The value of expression \[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 ...

The value of expression (1cos290)+(13×sin250)\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)is
1)$$$$\dfrac{{\sqrt 3 }}{4}
2)$$$\dfrac{4}{{\sqrt 3 }}$ 3)$$23\dfrac{2}{{\sqrt 3 }}
4)$$$$\dfrac{{\sqrt 3 }}{2}

Explanation

Solution

We have to find the value of the given trigonometric expression (1cos290)+(13×sin250)\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right) . We solve this using the formula of the double angle of sine function . We should also have the knowledge of values for various angles of trigonometric functions . Firstly we find the value of expression using the formula of sum of two angles of a sine function . Also , the conversion of an angle in terms of another trigonometric function.

Complete step-by-step solution:
Given :
We have to find the value of the expression (1cos290)+(13×sin250)\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)
We know , that
cos290=cos(36070)\cos290^\circ = \cos\left( {360 - 70} \right)^\circ The angle lies in the fourth quadrant and the value of cos function in the fourth is positive .
So ,
cos290=cos70\cos290^\circ = \cos70^\circ
Similarly ,
sin250=sin(180+70)\sin250^\circ = \sin\left( {180 + 70} \right)^\circ
The angle lies in the third quadrant and the value of sine function in the third quadrant is negative .
So ,  sin250=sin70\;\sin250^\circ = - \sin70^\circ
Now , the expression becomes
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \left( {\dfrac{1}{{\cos70^\circ }}} \right) - \left( {\dfrac{1}{{\sqrt 3 \times \sin70^\circ }}} \right)
Taking L.C.M. we get
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \dfrac{{\left[ {\sqrt 3 \times \sin70^\circ - \cos70^\circ } \right]}}{{\left[ {{\text{ }}\sqrt 3 \times \sin70^\circ \times \cos70^\circ } \right]}}
Multiplying numerator and denominator by 44 , we get
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \dfrac{{4 \times \left[ {\sqrt 3 \times \sin70^\circ - \cos70^\circ } \right]}}{{4 \times \left[ {{\text{ }}\sqrt 3 \times \sin70^\circ \times \cos70^\circ } \right]}}
Simplifying , we get
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \dfrac{{\left[ {\left( {\dfrac{{\sqrt 3 }}{2}} \right) \times \sin70^\circ - \left( {\dfrac{1}{2}} \right) \times \cos70^\circ } \right]}}{{\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \left[ {2 \times \sin70^\circ \times \cos70^\circ } \right]}}
We know that sin2x=2sinx×cosx\sin2x = 2\sin x \times \cos x
We also know that
cos30=32\cos30^\circ = \dfrac{{\sqrt 3 }}{2}
sin30=12\sin30^\circ = \dfrac{1}{2}
Using these values , we get
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \dfrac{{\left[ {\cos30^\circ \times \sin70^\circ - \sin30^\circ \times \cos70^\circ } \right]}}{{\left[ {\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \sin140^\circ } \right]}}
Also , the formula of difference of sine function is given as :
sin(AB)=sinA×cosBsinB×cosA\sin\left( {A - B} \right) = \sin A \times \cos B - \sin B \times \cos A
Also , we can write
sin140=sin(18040)\sin140^\circ = \sin\left( {180 - 40} \right)^\circ
The angle lies in the second quadrant and the value of sine function in the second quadrant is positive .
So , sin140=sin40\sin140^\circ = \sin40^\circ
U\sing these trigonometric formulas , we get
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \dfrac{{\sin40^\circ }}{{\left[ {\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \sin40^\circ } \right]}}
Cancelling the terms , we get
(1cos290)+(13×sin250)\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right) =43 = \dfrac{4}{{\sqrt 3 }}
Thus the value of the expression is 43\dfrac{4}{{\sqrt 3 }}
Hence , the correct option is(2)\left( 2 \right).

Note: The various trigonometric formulas are given as :
sin2x=2×sinx×cosx\sin2x = 2 \times \sin x \times \cos x
cos2x=2×cos2x1=12×sin2x\cos 2x = 2 \times {\cos^{2}}x - 1 = 1 - 2 \times {\sin^{2}}x
tan2x=tan2x(1tan2x)\tan 2x = \dfrac{{tan2x}}{{(1 - {\tan^{2}}x)}}
sin3x=3sinx4sin3x\sin 3x = 3\\\sin x - 4{\sin^{3}}x
cos3x=4cos3x3cosx\cos 3x = 4{\cos^{3}}x - 3\cos x