Question
Question: The value of expression \[\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 ...
The value of expression (cos290∘1)+(3×sin250∘1)is
1)$$$$\dfrac{{\sqrt 3 }}{4}
2)$$$\dfrac{4}{{\sqrt 3 }}$
3)$$32
4)$$$$\dfrac{{\sqrt 3 }}{2}
Solution
We have to find the value of the given trigonometric expression (cos290∘1)+(3×sin250∘1) . We solve this using the formula of the double angle of sine function . We should also have the knowledge of values for various angles of trigonometric functions . Firstly we find the value of expression using the formula of sum of two angles of a sine function . Also , the conversion of an angle in terms of another trigonometric function.
Complete step-by-step solution:
Given :
We have to find the value of the expression (cos290∘1)+(3×sin250∘1)
We know , that
cos290∘=cos(360−70)∘ The angle lies in the fourth quadrant and the value of cos function in the fourth is positive .
So ,
cos290∘=cos70∘
Similarly ,
sin250∘=sin(180+70)∘
The angle lies in the third quadrant and the value of sine function in the third quadrant is negative .
So ,sin250∘=−sin70∘
Now , the expression becomes
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \left( {\dfrac{1}{{\cos70^\circ }}} \right) - \left( {\dfrac{1}{{\sqrt 3 \times \sin70^\circ }}} \right)
Taking L.C.M. we get
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \dfrac{{\left[ {\sqrt 3 \times \sin70^\circ - \cos70^\circ } \right]}}{{\left[ {{\text{ }}\sqrt 3 \times \sin70^\circ \times \cos70^\circ } \right]}}
Multiplying numerator and denominator by 4 , we get
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \dfrac{{4 \times \left[ {\sqrt 3 \times \sin70^\circ - \cos70^\circ } \right]}}{{4 \times \left[ {{\text{ }}\sqrt 3 \times \sin70^\circ \times \cos70^\circ } \right]}}
Simplifying , we get
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \dfrac{{\left[ {\left( {\dfrac{{\sqrt 3 }}{2}} \right) \times \sin70^\circ - \left( {\dfrac{1}{2}} \right) \times \cos70^\circ } \right]}}{{\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \left[ {2 \times \sin70^\circ \times \cos70^\circ } \right]}}
We know that sin2x=2sinx×cosx
We also know that
cos30∘=23
sin30∘=21
Using these values , we get
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \dfrac{{\left[ {\cos30^\circ \times \sin70^\circ - \sin30^\circ \times \cos70^\circ } \right]}}{{\left[ {\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \sin140^\circ } \right]}}
Also , the formula of difference of sine function is given as :
sin(A−B)=sinA×cosB−sinB×cosA
Also , we can write
sin140∘=sin(180−40)∘
The angle lies in the second quadrant and the value of sine function in the second quadrant is positive .
So , sin140∘=sin40∘
U\sing these trigonometric formulas , we get
\left( {\dfrac{1}{{\cos290^\circ }}} \right) + \left( {\dfrac{1}{{\sqrt 3 \times \sin250^\circ }}} \right)$$$$ = \dfrac{{\sin40^\circ }}{{\left[ {\left( {\dfrac{{\sqrt 3 }}{4}} \right) \times \sin40^\circ } \right]}}
Cancelling the terms , we get
(cos290∘1)+(3×sin250∘1) =34
Thus the value of the expression is 34
Hence , the correct option is(2).
Note: The various trigonometric formulas are given as :
sin2x=2×sinx×cosx
cos2x=2×cos2x−1=1−2×sin2x
tan2x=(1−tan2x)tan2x
sin3x=3sinx−4sin3x
cos3x=4cos3x−3cosx