Question
Question: The value of expression \[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }...
The value of expression (cos 80∘1) − (sin 80∘3) is equal to
1) 2
2) 3
3) 2
4) 4
5) 5
Solution
Hint : We have to find the value of the given trigonometric expression(cos 80∘1) − (sin 80∘3). We solve this using the formula of double angle of sin function . We should also have the knowledge of values for various angles of trigonometric functions . Firstly we find the value of the given trigonometric expression using the formula of sum of two angles of a sine function . Also , the conversion of an angle in terms of another trigonometric function .
Complete step-by-step answer :
Given :
We have to find the value of the expression (cos 80∘1) − (sin 80∘3)
We know , that
cos 80∘ = cos (90 − 10)∘
The angle lies in the first quadrant and the value of the cosine function in the first quadrant is positive .
So ,
cos 80∘ = sin 10∘
Similarly ,
sin 80∘ = sin (90 − 10)∘
The angle lies in the first quadrant and the value of the sine function in the first quadrant is positive .
So , sin 80∘= cos 10∘
Now , the expression becomes
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}\left( {\dfrac{1}{{sin{\text{ }}10^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{cos{\text{ }}10^\circ }}} \right)
Taking L.C.M. we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}\dfrac{{\left[ {{\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\sqrt 3 {\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left[ {{\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}
Multiplying numerator and denominator by4, we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}\dfrac{{4{\text{ }} \times {\text{ }}\left[ {{\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\sqrt {3 \times } {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{4{\text{ }} \times {\text{ }}\left[ {{\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}
Simplifying , we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}\dfrac{{\left[ {{\text{ }}\left( {\dfrac{1}{2}} \right){\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{2}} \right){\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left( {\dfrac{1}{4}} \right){\text{ }} \times \left[ {2{\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}
We know that sin 2x = 2 sin x × cos x
We also know that
cos 30∘ = 23
sin 30∘ = 21
Using these values , we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}\dfrac{{\left[ {{\text{ }}sin{\text{ }}30^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}cos{\text{ }}30^\circ {\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left[ {{\text{ }}\left( {\dfrac{1}{4}} \right){\text{ }} \times {\text{ }}sin{\text{ }}20^\circ {\text{ }}} \right]}}
Also , the formula of difference of sin function is given as :
sin(A − B) = sin A × cos B − sin B × cos A
Using this trigonometric formulas , we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = \dfrac{{sin{\text{ }}20^\circ }}{{\left[ {{\text{ }}\left( {\dfrac{1}{4}} \right){\text{ }} \times {\text{ }}sin{\text{ }}20^\circ {\text{ }}} \right]}}
Cancelling the terms , we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}4
Thus the value of the expression is 4 .
Hence , the correct option is(4).
So, the correct answer is “Option 4”.
Note : The various trigonometric formulas we need to remember when by dividing or multiplying the given apply we are able to get a known trigonometric value are given as :
sin 2x = 2× sin x × cos x
cos2x=2×cos2x−1=1−2×sin2x
tan2x=(1−tan2x)tan2x
sin3x=3sinx−4sin3x
cos3x=4cos3x−3cosx