Solveeit Logo

Question

Question: The value of expression \[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }...

The value of expression (1cos 80)  (3sin 80)\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right) is equal to
1) 21){\text{ }}\sqrt 2
2) 32){\text{ }}\sqrt 3
3) 23){\text{ }}2
4) 44){\text{ }}4
5) 55){\text{ }}\sqrt 5

Explanation

Solution

Hint : We have to find the value of the given trigonometric expression(1cos 80)  (3sin 80)\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right). We solve this using the formula of double angle of sin function . We should also have the knowledge of values for various angles of trigonometric functions . Firstly we find the value of the given trigonometric expression using the formula of sum of two angles of a sine function . Also , the conversion of an angle in terms of another trigonometric function .

Complete step-by-step answer :
Given :
We have to find the value of the expression (1cos 80)  (3sin 80)\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)
We know , that
cos 80 = cos (90  10)cos{\text{ }}80^\circ {\text{ }} = {\text{ }}cos{\text{ }}\left( {90{\text{ }} - {\text{ }}10} \right)^\circ
The angle lies in the first quadrant and the value of the cosine function in the first quadrant is positive .
So ,
cos 80 = sin 10cos{\text{ }}80^\circ {\text{ }} = {\text{ }}sin{\text{ }}10^\circ
Similarly ,
sin 80 = sin (90  10)sin{\text{ }}80^\circ {\text{ }} = {\text{ }}sin{\text{ }}\left( {90{\text{ }} - {\text{ }}10} \right)^\circ
The angle lies in the first quadrant and the value of the sine function in the first quadrant is positive .
So , sin 80= cos 10sin{\text{ }}80^\circ = {\text{ }}cos{\text{ }}10^\circ
Now , the expression becomes
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}\left( {\dfrac{1}{{sin{\text{ }}10^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{cos{\text{ }}10^\circ }}} \right)
Taking L.C.M. we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}\dfrac{{\left[ {{\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\sqrt 3 {\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left[ {{\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}
Multiplying numerator and denominator by44, we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}\dfrac{{4{\text{ }} \times {\text{ }}\left[ {{\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\sqrt {3 \times } {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{4{\text{ }} \times {\text{ }}\left[ {{\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}
Simplifying , we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}\dfrac{{\left[ {{\text{ }}\left( {\dfrac{1}{2}} \right){\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{2}} \right){\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left( {\dfrac{1}{4}} \right){\text{ }} \times \left[ {2{\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}
We know that sin 2x = 2 sin x × cos xsin{\text{ }}2x{\text{ }} = {\text{ }}2{\text{ }}sin{\text{ }}x{\text{ }} \times {\text{ }}cos{\text{ }}x
We also know that
cos 30 = 32cos{\text{ }}30^\circ {\text{ }} = {\text{ }}\dfrac{{\sqrt 3 }}{2}
sin 30 = 12sin{\text{ }}30^\circ {\text{ }} = {\text{ }}\dfrac{1}{2}
Using these values , we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}\dfrac{{\left[ {{\text{ }}sin{\text{ }}30^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}cos{\text{ }}30^\circ {\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left[ {{\text{ }}\left( {\dfrac{1}{4}} \right){\text{ }} \times {\text{ }}sin{\text{ }}20^\circ {\text{ }}} \right]}}
Also , the formula of difference of sin function is given as :
sin(A  B) = sin A × cos B  sin B × cos Asin\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}sin{\text{ }}A{\text{ }} \times {\text{ }}cos{\text{ }}B{\text{ }} - {\text{ }}sin{\text{ }}B{\text{ }} \times {\text{ }}cos{\text{ }}A
Using this trigonometric formulas , we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = \dfrac{{sin{\text{ }}20^\circ }}{{\left[ {{\text{ }}\left( {\dfrac{1}{4}} \right){\text{ }} \times {\text{ }}sin{\text{ }}20^\circ {\text{ }}} \right]}}
Cancelling the terms , we get
\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)$$$$ = {\text{ }}4
Thus the value of the expression is 44 .
Hence , the correct option is(4)\left( 4 \right).
So, the correct answer is “Option 4”.

Note : The various trigonometric formulas we need to remember when by dividing or multiplying the given apply we are able to get a known trigonometric value are given as :
sin 2x = 2× sin x × cos xsin{\text{ }}2x{\text{ }} = {\text{ }}2 \times {\text{ }}sin{\text{ }}x{\text{ }} \times {\text{ }}cos{\text{ }}x
cos2x=2×cos2x1=12×sin2xcos2x = 2 \times {cos^2}x - 1 = 1 - 2 \times {sin^2}x
tan2x=tan2x(1tan2x)tan2x = \dfrac{{tan2x}}{{(1 - {tan^2}x)}}
sin3x=3sinx4sin3xsin3x = 3\sin x - 4{sin^3}x
cos3x=4cos3x3cosxcos3x = 4{cos^3}x - 3\cos x