Solveeit Logo

Question

Question: The value of \(e^{\log_{10}{\tan 1}{^\circ} + \log_{10}{\tan 2}{^\circ} + \log_{10}{\tan 3}{^\circ} ...

The value of elog10tan1+log10tan2+log10tan3+...........+log10tan89e^{\log_{10}{\tan 1}{^\circ} + \log_{10}{\tan 2}{^\circ} + \log_{10}{\tan 3}{^\circ} + ........... + \log_{10}{\tan 8}9{^\circ}} is

A

0

B

e

C

1/e

D

None of these

Answer

None of these

Explanation

Solution

We have elog10tan1o+log10tan2o+log10tan3o+..........+log10tan89oe^{\log_{10}\tan 1^{o} + \log_{10}\tan 2^{o} + \log_{10}\tan 3^{o} + .......... + \log_{10}\tan 89^{o}}

=elog10(tan1otan2otan3o.....tan89o)=elog101=eo=1= e^{\log_{10}(\tan 1^{o}\tan 2^{o}\tan 3^{o}.....\tan 89^{o})} = e^{\log_{10}1} = e^{o} = 1