Question
Mathematics Question on integral
The value of e integral ∫311x4(x−x3)31dx is.
A
6
B
0
C
3
D
4
Answer
6
Explanation
Solution
The correct option is(A): 6.
LetI=∫311x4(x−x3)31dx
Also,letx=sinθ⇒dx=cosθdθ
Whenx=31θ=sin−1(31)andwhenx=1,θ=2π
⇒I=∫π2sin−1(31)sin4θ(sinθ−sin3θ)31cosθdθ
=∫π2sin−1(31)sin4θ(sinθ)31(1−sin2θ)31cosθdθ
=∫s2πin−1(31)sin4θ(sinθ)31(cosθ)32cosθdθ
=∫π2sin−1(31)sin2θsin2θ(sinθ)31(cosθ)32cosθdθ
=∫π2sin−1(31)sinθ)35(cosθ)35cosec2θdθ
=∫π2sin−1(31)(cotθ)35cosec2θdθ
Letcotθ=t−cosec2θdθ=dt
Whenθ=sin−131,t=2√2andwhenθ=2π,t=0
∴I=−∫20√2(t)35dt
=−[83(t)38]20√2
=−83[(t)38]√02
=−83[−(2√2)38]
=−83[−(√8)38]
=83[(8)34]
=83[16]
=3×2
=6
Hence,the correct Answer is A.