Solveeit Logo

Question

Mathematics Question on integral

The value of e integral 131(xx3)x413dx∫^1_\frac{1}{3}\frac{(x-x^3)}{x^4}^\frac{1}{3} dx is.

A

6

B

0

C

3

D

4

Answer

6

Explanation

Solution

The correct option is(A): 6.

LetI=131(xx3)x413dxLet I=∫^1_\frac{1}{3}\frac{(x-x^3)}{x^4}^\frac{1}{3} dx

Also,letx=sinθdx=cosθdθAlso,let x=sinθ⇒dx=cosθdθ

Whenx=13θ=sin1(13)andwhenx=1,θ=π2When x=\frac{1}{3}θ=sin^-1(\frac{1}{3}) and when x=1,θ=\frac{π}{2}

I=π2sin1(13)(sinθsin3θ)13sin4θcosθdθ⇒I=∫^{π}{2}_sin-1(\frac{1}{3})\frac{(sinθ-sin3θ)^\frac{1}{3}}{sin4θ}cosθdθ

=π2sin1(13)(sinθ)13(1sin2θ)13sin4θcosθdθ=∫^{π}{2}_sin-1(\frac{1}{3})\frac{(sinθ)^\frac{1}{3}(1-sin2θ)^\frac{1}{3}}{sin^4θ}cosθdθ

=sπ2in1(13)(sinθ)13(cosθ)23sin4θcosθdθ=∫^\frac{π}{2}_sin-1(\frac{1}{3})\frac{(sinθ)^\frac{1}{3}(cosθ)^\frac{2}{3}}{sin^4θ}cosθdθ

=π2sin1(13)(sinθ)13(cosθ)23sin2θsin2θcosθdθ=∫^{π}{2}_sin-1(^\frac{1}{3})\frac{(sinθ)^\frac{1}{3}(cosθ)^\frac{2}{3}}{sin^2θsin^2θ}cosθdθ

=π2sin1(13)(cosθ)53sinθ)53cosec2θdθ=∫^{π}{2}_sin-1(\frac{1}{3})\frac{(cosθ)^\frac{5}{3}}{sinθ)^\frac{5}{3}}cosec^2θdθ

=π2sin1(13)(cotθ)53cosec2θdθ=∫^{π}{2}_sin-1(\frac{1}{3}){(cotθ)^\frac{5}{3}}cosec^2θdθ

Letcotθ=tcosec2θdθ=dtLet cotθ=t -cosec2θdθ=dt

Whenθ=sin113,t=22andwhenθ=π2,t=0When θ=sin-1\frac{1}{3},t=2√2 and when θ=\frac{π}{2},t=0

I=202(t)53dt∴I=-∫^0_2√2(t)^\frac{5}{3}dt

=[38(t)83]202=-[\frac{3}{8}(t)^\frac{8}{3}]^0_2√2

=38[(t)83]02=-\frac{3}{8}[(t)^\frac{8}{3}]^0_√2

=38[(22)83]=-\frac{3}{8}[-(2√2)^\frac{8}{3}]

=38[(8)83]=-\frac{3}{8}[-(√8)^\frac{8}{3}]

=38[(8)43]=\frac{3}{8}[(8)^\frac{4}{3}]

=38[16]=\frac{3}{8}[16]

=3×2=3×2

=6=6

Hence,the correct Answer is A.