Solveeit Logo

Question

Mathematics Question on Sequence and series

The value of k=110\displaystyle \sum_{k=1}^{10} (sin2kπ11+icos2kπ11)\left(sin\, \frac{2k\pi}{11}+i\,cos\, \frac{2k\pi}{11}\right) is :

A

11

B

1-1

C

i-i

D

ii

Answer

i-i

Explanation

Solution

k=110\displaystyle \sum_{k=1}^{10} (sin2kπ11+icos2kπ11)\left(sin\, \frac{2k\pi}{11}+i\,cos\, \frac{2k\pi}{11}\right) i=k=110i=\displaystyle \sum_{k=1}^{10} (cos2kπ11+isin2kπ11)\left(cos\, \frac{2k\pi}{11}+i\,sin\, \frac{2k\pi}{11}\right) =ik=110=i\displaystyle \sum_{k=1}^{10} (e2kπ11)\left(e^{- \frac{2k\pi}{11}}\right) =i\left\\{\displaystyle \sum_{k=0}^{10}\left(e^{-} \frac{2k\pi}{11}\right)-1\right\\}