Solveeit Logo

Question

Mathematics Question on Sequence and series

The value of r=1630(r+2)(r3) \displaystyle \sum^{30}_{r = 16} (r + 2)(r - 3) is equal to :

A

7785

B

7780

C

7775

D

7770

Answer

7780

Explanation

Solution

r=1630(r+2)(r3)\displaystyle \sum_{r=16}^{30}(r+2)(r-3)
=r=1630(r2r6)=(r=130r2r=115r2)(i=130rr=115r)6r=16301= \displaystyle \sum_{r=16}^{30}\left(r^{2}-r-6\right)=\left( \displaystyle \sum_{r=1}^{30} r^{2}- \displaystyle \sum_{r=1}^{15} r^{2}\right)\left(\sum_{i=1}^{30} r-\sum_{r=1}^{15} r\right)-6 \displaystyle \sum_{r=16}^{30} 1
=[(30)(31)(61)6(15)(16)(31)6][(30)(31)2(15)(16)2]6(15)=\left[\frac{(30)(31)(61)}{6}-\frac{(15)(16)(31)}{6}\right]-\left[\frac{(30)(31)}{2}-\frac{(15)(16)}{2}\right]-6(15)
=[(5)(31)(61)1240][465120]90=[(5)(31)(61)-1240]-[465-120]-90
=[7780]=[7780]