Solveeit Logo

Question

Mathematics Question on Limits

The value of limx0xx\displaystyle\lim_{x\to0} \frac{\left|x\right|}{x} is

A

1

B

-1

C

0

D

Does not exist

Answer

Does not exist

Explanation

Solution

LHL=limh0f(0h)=limh00h0h=limh0hh=limh0(1)=1LHL =\displaystyle\lim _{ h \rightarrow 0} f (0- h )=\displaystyle\lim _{ h \rightarrow 0} \frac{|0- h |}{0- h }=\displaystyle\lim _{ h \rightarrow 0} \frac{ h }{- h }=\displaystyle\lim _{ h \rightarrow 0}(-1)=-1
RHL=limx0f(0+h)=limh00+h0+h=limh0hh=limh0(1)=1RHL =\displaystyle\lim _{ x \rightarrow 0} f (0+ h )=\displaystyle\lim _{ h \rightarrow 0} \frac{|0+ h |}{0+ h }=\displaystyle\lim _{ h \rightarrow 0} \frac{ h }{ h }=\displaystyle\lim _{ h \rightarrow 0}(1)=1
LHLRHL\therefore \,LHL \neq RHL
limx0xx\Rightarrow \,\displaystyle\lim _{x \rightarrow 0} \frac{| x |}{ x } does not exist