Solveeit Logo

Question

Mathematics Question on limits of trigonometric functions

The value of limx(π2tan1x)1/x\displaystyle\lim_{x\to\infty}\left(\frac{\pi}{2} - \tan^{-1} x\right)^{1/x} is

A

0

B

1

C

-1

D

e

Answer

1

Explanation

Solution

Let y=limx(π2tan1x)y=\displaystyle\lim _{x \rightarrow \infty}\left(\frac{\pi}{2}-\tan ^{-1} x\right)
Taking log on both sides, we get (\left(\right. form )\left.\frac{\infty}{\infty}\right)
logy=limx1xlog(π2tan1x)\log y=\displaystyle\lim _{x \rightarrow \infty} \frac{1}{x} \log \left(\frac{\pi}{2}-\tan ^{-1} x\right)
=limx(11+x2)π2tan1x=\displaystyle\lim _{x \rightarrow \infty} \frac{\left(-\frac{1}{1+x^{2}}\right)}{\frac{\pi}{2}-\tan ^{-1} x}\,\,\,\, (using L' Hospital's rule)
=limx2x(1+x2)2(11+x2)=\displaystyle\lim _{x \rightarrow \infty} \frac{\frac{2 x}{\left(1+x^{2}\right)^{2}}}{-\left(\frac{1}{1+x^{2}}\right)} \,\,\,\, (using L' Hospital's rule)
=limx2x1+x2=0=\displaystyle\lim _{x \rightarrow \infty} \frac{-2 x}{1+x^{2}}=0
y=e0=1\Rightarrow y=e^{0}=1