Solveeit Logo

Question

Mathematics Question on Limits

The value of limn1+2+3+...nn2+100\displaystyle\lim_{n \to\infty} \frac{1+2+3+...n}{n^{2}+100} is equal to :

A

\infty

B

12\frac{1}{2}

C

2

D

0

Answer

12\frac{1}{2}

Explanation

Solution

Consider limn1+2+3+...nn2+100\displaystyle\lim_{n \to\infty} \frac{ 1+2+3+ ...n}{n^{2} +100}
=limnn(n+1)(n2+100)=\displaystyle\lim_{n\to\infty} \frac{n\left(n+1\right)}{\left(n^{2}+100\right)}
(By using sum of nn natural number 1+2+3+....+n=n(n+1)21+ 2 + 3 + .... + n = \frac{n\left(n+1\right)}{2} )
Take n2n^2 common from NrN^r and DrD^r.
=limnn2(1+1n)2n2(1+100n2)=12=\displaystyle\lim_{n\to\infty} \frac{n^{2} \left(1+ \frac{1}{n}\right)}{2n^{2}\left(1+ \frac{100}{n^{2}}\right) } = \frac{1}{2}