Solveeit Logo

Question

Mathematics Question on limits of trigonometric functions

The value of \displaystyle\lim_{n \to \infty} \frac{1}{n} \left\\{ \sec^2 \frac{\pi}{4 n} + \sec^2 \frac{2 \pi }{4n} + ..... \sec^2 \frac{n \pi}{4n} \right\\} is

A

loge2\log_e \, 2

B

π2\frac{\pi}{2}

C

4π\frac{4}{\pi}

D

ee

Answer

4π\frac{4}{\pi}

Explanation

Solution

We have, \displaystyle\lim _{n \rightarrow \infty} \frac{1}{n}\left\\{\sec ^{2} \frac{\pi}{4 n}+\sec ^{2} \frac{2 \pi}{4 n}+\ldots+\sec ^{2} \frac{n \pi}{4 n}\right\\}
=limnr=1n1nsec2(rπ4n)=01sec2(πx4)=\displaystyle\lim _{n \rightarrow \infty} \displaystyle\sum_{r=1}^{n} \frac{1}{n} \sec ^{2}\left(\frac{r \pi}{4 n}\right)=\int\limits_{0}^{1} \sec ^{2}\left(\frac{\pi x}{4}\right)
=4π[tan(πx4)]01=\frac{4}{\pi}\left[\tan \left(\frac{\pi x}{4}\right)\right]_{0}^{1}
=4π×1=4π=\frac{4}{\pi} \times 1=\frac{4}{\pi}