Question
Mathematics Question on limits of trigonometric functions
The value of \displaystyle\lim_{n \to \infty} \frac{1}{n} \left\\{ \sec^2 \frac{\pi}{4 n} + \sec^2 \frac{2 \pi }{4n} + ..... \sec^2 \frac{n \pi}{4n} \right\\} is
A
loge2
B
2π
C
π4
D
e
Answer
π4
Explanation
Solution
We have, \displaystyle\lim _{n \rightarrow \infty} \frac{1}{n}\left\\{\sec ^{2} \frac{\pi}{4 n}+\sec ^{2} \frac{2 \pi}{4 n}+\ldots+\sec ^{2} \frac{n \pi}{4 n}\right\\}
=n→∞limr=1∑nn1sec2(4nrπ)=0∫1sec2(4πx)
=π4[tan(4πx)]01
=π4×1=π4