Question
Mathematics Question on Limits
The value of n→∞limn(n!)n1 is
1
e21
2e1
e1
e1
Solution
x→∞limn(n!)1/n=n→∞lim(nnn!)1/n
We have, nnn!=n⋅n⋅n1⋅2⋅3n
\therefore \left\\{\frac{n !}{n^{n}}\right\\}^{1 / n}=\left\\{\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{r}{n} \cdots \frac{n}{n}\right\\}^{1 / n}
\Rightarrow \displaystyle\lim _{n \rightarrow \infty}\left\\{\frac{n !}{n^{n}}\right\\}^{1 / n}
=\displaystyle\lim _{n \rightarrow \infty}\left\\{\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{r}{n} \cdots \frac{n}{n}\right\\}^{1 / n}
Let A=\displaystyle\lim _{n \rightarrow \infty}\left\\{\frac{n !}{n^{n}}\right\\}^{1 / n}
Then, A=\displaystyle\lim _{n \rightarrow \infty}\left\\{\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{r}{n} \cdots \frac{n}{n}\right\\}^{1 / n}
⇒logA=n→∞limn1Σlog(nr)=0∫1logxdx
=[xlogx−∫x1⋅xdx]01
Integrating by parts
=[xlogx−x]01=−1
⇒A=e−1=e1