Solveeit Logo

Question

Mathematics Question on Limits

The value of limn(n!)1nn\displaystyle \lim_{n \to \infty}\frac{\left(n!\right)^{\frac{1}{n}}}{n} is

A

1

B

1e2\frac{1}{e^{2}}

C

12e\frac{1}{2e}

D

1e\frac{1}{e}

Answer

1e\frac{1}{e}

Explanation

Solution

limx(n!)1/nn=limn(n!nn)1/n\displaystyle \lim _{x \rightarrow \infty} \frac{(n !)^{1 / n}}{n}=\displaystyle \lim _{n \rightarrow \infty}\left(\frac{n !}{n^{n}}\right)^{1 / n}
We have, n!nn=123nnnn\frac{n !}{n^{n}}=\frac{1 \cdot 2 \cdot 3}{n \cdot n \cdot n} \quad n
\therefore \left\\{\frac{n !}{n^{n}}\right\\}^{1 / n}=\left\\{\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{r}{n} \cdots \frac{n}{n}\right\\}^{1 / n}
\Rightarrow \displaystyle\lim _{n \rightarrow \infty}\left\\{\frac{n !}{n^{n}}\right\\}^{1 / n}
=\displaystyle\lim _{n \rightarrow \infty}\left\\{\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{r}{n} \cdots \frac{n}{n}\right\\}^{1 / n}
Let A=\displaystyle\lim _{n \rightarrow \infty}\left\\{\frac{n !}{n^{n}}\right\\}^{1 / n}
Then, A=\displaystyle\lim _{n \rightarrow \infty}\left\\{\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{r}{n} \cdots \frac{n}{n}\right\\}^{1 / n}
logA=limn1nΣlog(rn)=01logxdx\Rightarrow \log A =\displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \Sigma \log \left(\frac{r}{n}\right)=\int\limits_{0}^{1} \log x d x
=[xlogx1xxdx]01=\left[x \log x-\int \frac{1}{x} \cdot x d x\right]_{0}^{1}
Integrating by parts
=[xlogxx]01=1=[x \log x-x]_{0}^{1}=-1
A=e1=1e\Rightarrow A=e^{-1}=\frac{1}{e}