Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The value of limn1+23+4+56++(3n2)+(3n1)3n2n4+4n+3n4+5n+4\displaystyle\lim _{n \rightarrow \infty} \frac{1+2-3+4+5-6+\ldots +(3 n-2)+(3 n-1)-3 n}{\sqrt{2 n^4+4 n+3-} \sqrt{n^4+5 n+4}} is :

A

3(2+1)3(\sqrt{2}+1)

B

32(2+1)\frac{3}{2}(\sqrt{2}+1)

C

2+12\frac{\sqrt{2}+1}{2}

D

322\frac{3}{2 \sqrt{2}}

Answer

32(2+1)\frac{3}{2}(\sqrt{2}+1)

Explanation

Solution

n→∞Lim​2n4+4n+3​−n4+5n+4​0+3+6+9+….n terms ​
n→∞Lim​2(2n4+4n+3​−n4+5n+4​)3n(n−1)​
=32(21)=32(2+1)=\frac3{2(\sqrt2-1)}=\frac3{2}(\sqrt2+1)