Solveeit Logo

Question

Question: The value of \(\dfrac{\sin 3\theta +\sin 5\theta +\sin 7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\...

The value of sin3θ+sin5θ+sin7θ+sin9θcos3θ+cos5θ+cos7θ+cos9θ\dfrac{\sin 3\theta +\sin 5\theta +\sin 7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\theta +\cos 7\theta +\cos 9\theta } is equal to
(a) tan3θ\tan 3\theta
(b) cot3θ\cot 3\theta
(c) tan6θ\tan 6\theta
(d) cot6θ\cot 6\theta

Explanation

Solution

We should rearrange the terms and group them such that 3θ3\theta term comes together with 9θ9\theta , and the 5θ5\theta term comes together with 7θ7\theta . The advantage of this grouping is that we can get our result in a fewer number of steps. We must then use the formula sinC+sinD=12sin(C+D2)cos(CD2)\sin C+\sin D=\dfrac{1}{2}\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) for addition of sine, and the formula cosC+cosD=12cos(C+D2)cos(CD2)\cos C+\cos D=\dfrac{1}{2}\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) for addition of cosines. On further simplifying, we can easily get our answer.

Complete step by step solution:
Let us assume a variable xx such that x=sin3θ+sin5θ+sin7θ+sin9θcos3θ+cos5θ+cos7θ+cos9θx=\dfrac{\sin 3\theta +\sin 5\theta +\sin 7\theta +\sin 9\theta }{\cos 3\theta +\cos 5\theta +\cos 7\theta +\cos 9\theta } .
We can rearrange and group the terms in numerator and denominator and write it as follows,
x=(sin3θ+sin9θ)+(sin5θ+sin7θ)(cos3θ+cos9θ)+(cos5θ+cos7θ)...(i)x=\dfrac{\left( \sin 3\theta +\sin 9\theta \right)+\left( \sin 5\theta +\sin 7\theta \right)}{\left( \cos 3\theta +\cos 9\theta \right)+\left( \cos 5\theta +\cos 7\theta \right)}...\left( i \right)
We know about the identity for the addition of sine, which says
sinC+sinD=12sin(C+D2)cos(CD2)\sin C+\sin D=\dfrac{1}{2}\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
and for the addition of cosines, we have
cosC+cosD=12cos(C+D2)cos(CD2)\cos C+\cos D=\dfrac{1}{2}\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
We should use these two identities in equation (i) to get,
x=\dfrac{\left\\{ \dfrac{1}{2}\sin \left( \dfrac{3\theta +9\theta }{2} \right)\cos \left( \dfrac{3\theta -9\theta }{2} \right) \right\\}+\left\\{ \dfrac{1}{2}\sin \left( \dfrac{5\theta +7\theta }{2} \right)\cos \left( \dfrac{5\theta -7\theta }{2} \right) \right\\}}{\left\\{ \dfrac{1}{2}\cos \left( \dfrac{3\theta +9\theta }{2} \right)\cos \left( \dfrac{3\theta -9\theta }{2} \right) \right\\}+\left\\{ \dfrac{1}{2}\cos \left( \dfrac{5\theta +7\theta }{2} \right)\cos \left( \dfrac{5\theta -7\theta }{2} \right) \right\\}}
Cancelling 12\dfrac{1}{2} from each term and evaluating the equation further, we get the following simplified version,
x=sin6θcos(3θ)+sin6θcos(θ)cos6θcos(3θ)+cos6θcos(θ)x=\dfrac{\sin 6\theta \cos \left( -3\theta \right)+\sin 6\theta \cos \left( -\theta \right)}{\cos 6\theta \cos \left( -3\theta \right)+\cos 6\theta \cos \left( -\theta \right)}
We all know that for any angle,cos(Φ)=cosΦ\cos \left( -\Phi \right)=\cos \Phi .
We can use the above point to further simplify our equation,
x=sin6θcos3θ+sin6θcosθcos6θcos3θ+cos6θcosθx=\dfrac{\sin 6\theta \cos 3\theta +\sin 6\theta \cos \theta }{\cos 6\theta \cos 3\theta +\cos 6\theta \cos \theta }
Now, taking sin6θ\sin 6\theta as common from the numerator, and cos6θ\cos 6\theta as common from the denominator, we get the following
x=sin6θ(cos3θ+cosθ)cos6θ(cos3θ+cosθ)x=\dfrac{\sin 6\theta \left( \cos 3\theta +\cos \theta \right)}{\cos 6\theta \left( \cos 3\theta +\cos \theta \right)}
We can now cancel the term (cos3θ+cosθ)\left( \cos 3\theta +\cos \theta \right) from numerator and denominator to get
x=sin6θcos6θx=\dfrac{\sin 6\theta }{\cos 6\theta }
We know that sinΦcosΦ=tanΦ\dfrac{\sin \Phi }{\cos \Phi }=\tan \Phi .
Using the above identity, we can write
x=tan6θx=\tan 6\theta

So, the correct answer is “Option c”.

Note: Some students, in eagerness, may consider the variable θ\theta (theta) as 0 (zero). We should clearly note the difference between the two. We can solve this problem directly without rearranging the terms in the first step. But then we have to apply the formula for addition of cosines one more time, which will be a lengthy process.