Solveeit Logo

Question

Question: The value of \( \dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7/6}^{5/6} sec\left( {\pi x} \right)dx \...

The value of π2ln37/65/6sec(πx)dx\dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7/6}^{5/6} sec\left( {\pi x} \right)dx is

Explanation

Solution

Hint : First consider πx\pi x as t. and then differentiate t with respect to x. Substitute the obtained values accordingly in the given trigonometric expression. As we have changed the given expression, the limits also will be changed according to the values of x and t. And then find the integration of secant function using the below mentioned formula.
Formula used:
Integration of secdx=logsecx+tanx\int secdx = \log \left| {secx + \tan x} \right|

Complete step-by-step answer :
We are given to find the value of π2ln37/65/6sec(πx)dx\dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7/6}^{5/6} sec\left( {\pi x} \right)dx
Let us first consider πx\pi x as t.
t=πxt = \pi x
On differentiating the above equation with respect to x, we get
ddxt=ddx(πx)\dfrac{d}{{dx}}t = \dfrac{d}{{dx}}\left( {\pi x} \right)
dtdx=πdxdx=π\Rightarrow \dfrac{{dt}}{{dx}} = {\pi}\dfrac{{dx}}{{dx}} = {\pi}
dx=dtπ\Rightarrow dx = \dfrac{{dt}}{{\pi}}
Substituting the obtained value of dxdx and πx\pi x , we get
π2ln37π/65π/6sectπdt\Rightarrow \dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7{\pi}/6}^{5{\pi}/6} \dfrac{{sect}}{{\pi}}dt .
The limits change when x is replaced by the terms of t as x=56t=5π6x = \dfrac{5}{6} \Rightarrow t = \dfrac{{5{\pi}}}{6} and x=76t=7π6x = \dfrac{7}{6} \Rightarrow t = \dfrac{{7{\pi}}}{6} .
Taking out π{\pi} which is in the denominator, we get
π2ln3×1π7π/65π/6sectdt=πln37π/65π/6sectdt\Rightarrow \dfrac{{{{\pi}^2}}}{{\ln 3}} \times \dfrac{1}{{\pi}}\int \nolimits_{7{\pi}/6}^{5{\pi}/6} sectdt = \dfrac{{\pi}}{{\ln 3}}\int \nolimits_{7{\pi}/6}^{5{\pi}/6} sectdt
Now apply the integration formula secdx=logsecx+tanx\int secdx = \log \left| {secx + \tan x} \right| as x is equal to t.
πln3logsecx+tanx7π/65π/6\Rightarrow \dfrac{{\pi}}{{\ln 3}}\left. {\log \left| {secx + \tan x} \right|} \right|_{7{\pi}/6}^{5{\pi}/6}
Applying the limits, we get
πln3log(sec  5π6+tan  5π6)(sec  7π6+tan  7π6)\Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {sec\;\dfrac{{5{\pi}}}{6} + \tan \;\dfrac{{5{\pi}}}{6}} \right) - \left( {sec\;\dfrac{{7{\pi}}}{6} + \tan\; \dfrac{{7{\pi}}}{6}} \right)} \right|
5π6\dfrac{{5{\pi}}}{6} is also equal to 150 degrees and 7π6\dfrac{{7{\pi}}}{6} is also equal to 210 degrees.
πln3log(sec  150+tan  150)(sec  210+tan  210)\Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {sec\;{{150}^ \circ } + \tan \;{{150}^ \circ }} \right) - \left( {sec\;{{210}^ \circ } + \tan \;{{210}^ \circ }} \right)} \right|
The value of sec  150=23sec\;{150^ \circ } = - \dfrac{2}{{\sqrt 3 }} , tan  150=13\tan\;{150^ \circ } = - \dfrac{1}{{\sqrt 3 }} , sec  210=23sec\;{210^ \circ } = - \dfrac{2}{{\sqrt 3 }} and tan  210=13\tan\;{210^ \circ } = \dfrac{1}{{\sqrt 3 }}
Therefore,
πln3log(sec  150+tan  150)(sec  210+tan  210)=πln3log(2313)(23+13)\Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {sec\;{{150}^ \circ } + \tan \;{{150}^ \circ }} \right) - \left( {sec\;{{210}^ \circ } + \tan\;{{210}^ \circ }} \right)} \right| = \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {\dfrac{{ - 2}}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right) - \left( {\dfrac{{ - 2}}{{\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}} \right)} \right|
πln3log23132313=πln3log23=πln3log23\Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\dfrac{{ - 2}}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }} - \dfrac{{ - 2}}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right| = \dfrac{{\pi}}{{\ln 3}}\log \left| { - \dfrac{2}{{\sqrt 3 }}} \right| = \dfrac{{\pi}}{{\ln 3}}\log \dfrac{2}{{\sqrt 3 }}
Therefore, the value of π2ln37/65/6sec(πx)dx\dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7/6}^{5/6} sec\left( {\pi x} \right)dx is πln3log23\dfrac{{\pi}}{{\ln 3}}\log \dfrac{2}{{\sqrt 3 }}
So, the correct answer is “πln3log23\dfrac{{\pi}}{{\ln 3}}\log \dfrac{2}{{\sqrt 3 }} ”.

Note : We can also write secant as the reciprocal of cosine and then solve the integration. Here we have taken the integration of secant in terms of “log” which is defined for base 10. We can also consider it as “ln” which is defined for base ‘e’, e is the exponential function. Be careful while calculating the differentiation and integration.