Solveeit Logo

Question

Question: The value of \[\dfrac{d}{{dx}}\left( {{x^x}} \right)\] is equal to: A. \[{x^x}\log \left( {\dfrac{...

The value of ddx(xx)\dfrac{d}{{dx}}\left( {{x^x}} \right) is equal to:
A. xxlog(ex){x^x}\log \left( {\dfrac{e}{x}} \right)
B. xxlogex{x^x}\log ex
C. xx(1+logx){x^x}\left( {1 + \log x} \right)
D. xxlogx{x^x}\log x

Explanation

Solution

Hint: First of all, apply logarithm to the function to obtain a simple equation. Then use the product rule of derivatives to find the derivative of the given function. So, use this concept to reach the solution of the given problem.

Complete step-by-step answer:
Let y=xxy = {x^x}
Applying logarithms on both sides, we get
logy=logxx\Rightarrow \log y = \log {x^x}
We know that logab=bloga\log {a^b} = b\log a
logy=xlogx\Rightarrow \log y = x\log x
Differentiating on both sides w.r.t xx, we get
ddx(logy)=ddx(xlogx)\Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {x\log x} \right)
By product rule of derivatives, we have

1ydydx=xddx(logx)+logxddx(x) 1ydydx=x×1x+logx×1 1ydydx=1+logx dydx=y(1+logx) dydx=xx(1+logx) [y=xx]  \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}\left( {\log x} \right) + \log x\dfrac{d}{{dx}}\left( x \right) \\\ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} + \log x \times 1 \\\ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 1 + \log x \\\ \Rightarrow \dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right) \\\ \therefore \dfrac{{dy}}{{dx}} = {x^x}\left( {1 + \log x} \right){\text{ }}\left[ {\because y = {x^x}} \right] \\\

Therefore, the derivative of xx{x^x} is xx(1+logx){x^x}\left( {1 + \log x} \right).
Thus, the correct option is C. xx(1+logx){x^x}\left( {1 + \log x} \right).

Note: The product rule states that if f(x)f\left( x \right) and g(x)g\left( x \right) are both differentiable, then ddx[f(x)g(x)]=f(x)ddx[g(x)]+g(x)ddx[f(x)]\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right]. Remember the derivative of xx{x^x} as a formula which will be useful to solve higher derivative problems.