Solveeit Logo

Question

Question: The value of \[\dfrac{{5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} }}{{\int\limi...

The value of 505001(1x50)100dx01(1x50)101dx\dfrac{{5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} }}{{\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} }} is
A.5040
B.5051
C.5050
D.None of these

Explanation

Solution

First we will assume that I1=01(1x50)100dx{I_1} = \int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} and I2=01(1x50)101dx{I_2} = \int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} . Then we will apply integration by parts fg=fgfg\int {fg'} = fg - \int {f'g} for I2{I_2} of the above equation, where f=(1x50)101f = {\left( {1 - {x^{50}}} \right)^{101}} and g=1g' = 1. Then we will simplify to find the required value.

Complete step-by-step answer:
We are given that 505001(1x50)100dx01(1x50)101dx\dfrac{{5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} }}{{\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} }}.
Let us assume that I1=01(1x50)100dx{I_1} = \int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} and I2=01(1x50)101dx{I_2} = \int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} .
So, we have
5050I1I2 ......eq.(1)\Rightarrow \dfrac{{5050{I_1}}}{{{I_2}}}{\text{ ......eq.(1)}}
Within the above difference, applying integration by parts fg=fgfg\int {fg'} = fg - \int {f'g} for I2{I_2} of the above equation, where f=(1x50)101f = {\left( {1 - {x^{50}}} \right)^{101}} and g=1g' = 1, we get

I2=(1x50)101x0101(101)(1x50)10050x49xdx I2=(1x50)101x0150(101)01(1x50)100x50dx I2=(1150)1(1050)0505001(1x50)100x50dx I2=(11)(10)0505001(1x50)100x50dx I2=00505001(1x50)101dx+505001(1x50)100dx I2=5050I2+5050I1  \Rightarrow {I_2} = \left. {{{\left( {1 - {x^{50}}} \right)}^{101}}x} \right|_0^1 - \int\limits_0^1 {\left( {101} \right){{\left( {1 - {x^{50}}} \right)}^{100}}50 \cdot {x^{49}} \cdot xdx} \\\ \Rightarrow {I_2} = \left. {{{\left( {1 - {x^{50}}} \right)}^{101}}x} \right|_0^1 - 50\left( {101} \right)\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}{x^{50}}dx} \\\ \Rightarrow {I_2} = \left( {1 - {1^{50}}} \right) \cdot 1 - \left( {1 - {0^{50}}} \right) \cdot 0 - 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}{x^{50}}dx} \\\ \Rightarrow {I_2} = \left( {1 - 1} \right) - \left( {1 - 0} \right) \cdot 0 - 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}{x^{50}}dx} \\\ \Rightarrow {I_2} = 0 - 0 - 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}dx} + 5050\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}dx} \\\ \Rightarrow {I_2} = - 5050{I_2} + 5050{I_1} \\\

Adding 5050I25050{I_2} in the above equation on both sides, we get

I2+5050I2=5050I2+5050I1+5050I2 I2+5050I2=5050I1 5051I2=5050I1  \Rightarrow {I_2} + 5050{I_2} = - 5050{I_2} + 5050{I_1} + 5050{I_2} \\\ \Rightarrow {I_2} + 5050{I_2} = 5050{I_1} \\\ \Rightarrow 5051{I_2} = 5050{I_1} \\\

Dividing the above equation by I2{I_2} on both sides, we get

5051I2I2=5050I1I2 5051=5050I1I2 5050I1I2=5051  \Rightarrow \dfrac{{5051{I_2}}}{{{I_2}}} = \dfrac{{5050{I_1}}}{{{I_2}}} \\\ \Rightarrow 5051 = \dfrac{{5050{I_1}}}{{{I_2}}} \\\ \Rightarrow \dfrac{{5050{I_1}}}{{{I_2}}} = 5051 \\\

Hence, option B is correct.

Note: We need to know that while finding the value of indefinite integral, we have to add the constant in the final answer or else the answer will be incomplete. We have to be really thorough with the integrations and differentiation of the functions. The key point in this question is to use the integration by parts fg=fgfg\int {fg'} = fg - \int {f'g} to solve this problem. Do not forget that many integrals can be evaluated in multiple ways and so more than one technique may be used on it, but this problem can only be solved by parts.