Solveeit Logo

Question

Question: The value of \(\dfrac{{2\tan 30^\circ }}{{1 - {{\tan }^2}30^\circ }}\) is \( a.{\text{ }}\cos 60...

The value of 2tan301tan230\dfrac{{2\tan 30^\circ }}{{1 - {{\tan }^2}30^\circ }} is
a. cos60 b. sin60 c. tan60 d. sin30  a.{\text{ }}\cos 60^\circ \\\ b.{\text{ sin}}60^\circ \\\ c.{\text{ tan}}60^\circ \\\ d.{\text{ sin3}}0^\circ \\\

Explanation

Solution

Hint: - Use tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
Given equation is
2tan301tan230\dfrac{{2\tan 30^\circ }}{{1 - {{\tan }^2}30^\circ }}
Now substitute tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}

2sin30cos301(sin30cos30)2=2sin30cos30cos230sin230cos230=2sin30cos230sin230×cos230cos30 2sin30cos30cos230sin230 \Rightarrow \dfrac{{2\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}}}{{1 - {{\left( {\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}} \right)}^2}}} = \dfrac{{2\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}}}{{\dfrac{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }}{{{{\cos }^2}30^\circ }}}} = \dfrac{{2\sin 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} \times \dfrac{{{{\cos }^2}30^\circ }}{{\cos 30^\circ }} \\\ \Rightarrow \dfrac{{2\sin 30^\circ \cos 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} \\\

As we know cos2θsin2θ=cos2θ, 2sinθcosθ=sin2θ{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta ,{\text{ 2sin}}\theta {\text{cos}}\theta = \sin 2\theta
2sin30cos30cos230sin230=sin60cos60=tan60\Rightarrow \dfrac{{2\sin 30^\circ \cos 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} = \dfrac{{\sin 60^\circ }}{{\cos 60^\circ }} = \tan 60^\circ
So, this is the required answer.
Hence, option (c) is correct.

Note: - Whenever we face such types of problems, always remember the trigonometric identities which are written above then simplify the given problem statement using these identities we will get the required answer.