Solveeit Logo

Question

Question: The value of \[\dfrac{{1 - \sin A}}{{\cos A}}\] is equal to (A) \[\dfrac{{\cos A}}{{1 + \sin A}}\]...

The value of 1sinAcosA\dfrac{{1 - \sin A}}{{\cos A}} is equal to
(A) cosA1+sinA\dfrac{{\cos A}}{{1 + \sin A}}
(B) sinA1cosA\dfrac{{\sin A}}{{1 - \cos A}}
(C) tanA1+tanA\dfrac{{\tan A}}{{1 + \tan A}}
(D) tanA1+cosA\dfrac{{\tan A}}{{1 + \cos A}}

Explanation

Solution

In the given question, we have two simple trigonometric functions, sine and cosine. We do not have direct formulae to apply and simplify. So, we make modifications in the numerator and the denominator by multiplying and dividing a particular term. By doing this, we can simplify it into a form where we can cancel out or group terms so that we can apply formulae easily. Then, we can simplify the terms and use the available formulae to get to the final answer.

Formula used:
(a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}
sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1

Complete step by step answer:
Let the consider the given expression,
1sinAcosA\dfrac{{1 - \sin A}}{{\cos A}}
We have 1sinA1 - \sin A in the numerator. In order to use the (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} formula, we need 1+sinA1 + \sin A. So, we multiply and divide by 1+sinA1 + \sin A.
1sinAcosA=1sinAcosA×1+sinA1+sinA\Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{1 - \sin A}}{{\cos A}} \times \dfrac{{1 + \sin A}}{{1 + \sin A}}
Let us now group the numerators and the denominators,
1sinAcosA=(1sinA)(1+sinA)cosA(1+sinA)\Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}}{{\cos A\left( {1 + \sin A} \right)}}…… (1)
We can see that the numerator is in the form (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}
Where,
a=1a = 1
b=sinAb = \sin A
(1sinA)(1+sinA)=1sin2A\Rightarrow \left( {1 - \sin A} \right)\left( {1 + \sin A} \right) = 1 - {\sin ^2}A
Substituting in (1), we get
1sinAcosA=1sin2AcosA(1+sinA)\Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{1 - {{\sin }^2}A}}{{\cos A\left( {1 + \sin A} \right)}}
We know that,
sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1
1sin2A=cos2A\Rightarrow 1 - {\sin ^2}A = {\cos ^2}A
Substituting this, we get
1sinAcosA=cos2AcosA(1+sinA)\Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{{{\cos }^2}A}}{{\cos A\left( {1 + \sin A} \right)}}
We can cancel out the cosA\cos A in the denominator.
Now, we get
1sinAcosA=cosA1+sinA\Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{\cos A}}{{1 + \sin A}}
Therefore, the final answer is cosA1+sinA\dfrac{{\cos A}}{{1 + \sin A}}. Hence, option (A) is the correct answer.

Note:
The question does not give us an expression where we can apply a formula directly. So, we need to make changes according to the terms present. The denominator cannot be simplified since it's only a trigonometric function. So, we can only change the numerator. Note that the question contains trigonometric functions, but we also use algebraic formulae. So, we need to be thorough with all the formulae.