Question
Question: The value of determinant \[\left| {\begin{array}{*{20}{c}} 1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfr...
The value of determinant \left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right| is ___________
A - 2+2
B - 2−2
C - −(2+2)
D - −(2−2)
Solution
Firstly expand the determinant as general , on solving the determinant we get eiθ form type things in it for this use eiθ=cosθ+isinθ apply it in the equation and also remember that cos(−θ)=cosθ and sin(−θ)=−sinθ .
Complete step-by-step answer:
As we have to find the value of determinant \left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right| , So for this now we have to expand the given determinant , with respect to column 1
So ,
1\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{{2\pi }}{3}}}} \\\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right| − {e^{ - i\dfrac{\pi }{3}}}$$$\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|$$ + {e^{ - i\dfrac{\pi }{4}}}$$$\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
1&{{e^{i\dfrac{{2\pi }}{3}}}}
\end{array}} \right|$$
So on expanding the determinant ,
⇒11−ei32π.e−i32π−e−i3πei3π−ei4π.ei32π+e−i4πei3π.ei32π−ei4π
On solving further ,
⇒0−e−i3πei3π−ei125π+e−i4πe−π−ei4π
⇒−1−ei125π.e−i3π+e−π.e−i4π−1
⇒−2+e−i3π+i125π+e−i4π−iπ
On solving the power we get the final solution ,
⇒−2+e−i43π+ei43π
Now we know that from the value of eiθ=cosθ+isinθ , apply this on the above equation ,
⇒−2+cos4−3π+isin4−3π+cos43π+isin43π
We know that from the trigonometry that is cos(−θ)=cosθ and sin(−θ)=−sinθ
So by using this we get ,
⇒−2+2cos43π
Hence we know the value of cos43π=−21
−2−22 or we write as −2−2
So the option C is correct .
Note: The value of eiθ=cosθ+isinθ is known as the Euler's formula . If we have a complex numberz=r(cosθ+isinθ) written in polar form, we can use Euler's formula to write it even more concisely in exponential form that is r.eiθ