Solveeit Logo

Question

Mathematics Question on Properties of Determinants

The value of determinant abb+ca bac+ab caa+bc\begin{vmatrix}a-b&b+c&a\\\ b-a&c+a&b\\\ c-a&a+b&c \end{vmatrix} is

A

1

B

0

C

2

D

3

Answer

0

Explanation

Solution

Operating R1R1R2R_1\rightarrow R_1-R_2
R2R2R3R_2\rightarrow R_2-R_3
0ab(ab)(a+b+c)\0bc(bc)(a+b+c)\1cc2ab\begin{vmatrix}0 & a-b & (a-b)(a+b+c)\\\0&b-c&(b-c)(a+b+c)\\\1 &c&c^2-ab\end{vmatrix}
(ab)(bc)01a+b+c\01a+b+c\1cc2ab=0\Rightarrow (a-b)(b-c)\begin{vmatrix}0 &1 &a+b+c\\\0 &1&a+b+c\\\1&c&c^2-ab\end{vmatrix}=0
Because R1R_1 and R2R_2 are identical.
Hence (b) is the correct answer.