Solveeit Logo

Question

Question: The value of \(\Delta = \left| \begin{matrix} 10C_{4} & 10C_{5} & 11C_{m} \\ 11C_{6} & 11C_{7} & 12C...

The value of Δ=10C410C511Cm11C611C712Cm+212C812C913Cm+4\Delta = \left| \begin{matrix} 10C_{4} & 10C_{5} & 11C_{m} \\ 11C_{6} & 11C_{7} & 12C_{m + 2} \\ 12C_{8} & 12C_{9} & 13C_{m + 4} \end{matrix} \right| is equal to zero,

where m is

A

6

B

4

C

5

D

None of these

Answer

5

Explanation

Solution

Δ=10C410C511Cm11C611C712Cm+212C812C913Cm+4\Delta = \left| \begin{matrix} 10C_{4} & 10C_{5} & 11C_{m} \\ 11C_{6} & 11C_{7} & 12C_{m + 2} \\ 12C_{8} & 12C_{9} & 13C_{m + 4} \end{matrix} \right| = 0

Applying C2C1+C2C_{2} \rightarrow C_{1} + C_{2}

10C_{4} & 10C_{4} +^{10}C_{5} & 11C_{m} \\ 11C_{6} & 11C_{6} +^{11}C_{7} & 12C_{m + 2} \\ 12C_{8} & 12C_{8} +^{12}C_{9} & 13C_{m + 4} \end{matrix} \right| = 0$$ ⇒$\Delta = \left| \begin{matrix} 10C_{4} & 11C_{5} & 11C_{m} \\ 11C_{6} & 12C_{7} & 12C_{m + 2} \\ 12C_{8} & 13C_{9} & 13C_{m + 4} \end{matrix} \right|$= 0 Clearly $m = 5$ satisfies the above result $$\lbrack\because C_{2},C_{3}\text{willbeidentical}\rbrack$$