Question
Question: The value of \(\Delta = \left| \begin{matrix} 10C_{4} & 10C_{5} & 11C_{m} \\ 11C_{6} & 11C_{7} & 12C...
The value of Δ=10C411C612C810C511C712C911Cm12Cm+213Cm+4 is equal to zero,
where m is
A
6
B
4
C
5
D
None of these
Answer
5
Explanation
Solution
Δ=10C411C612C810C511C712C911Cm12Cm+213Cm+4 = 0
Applying C2→C1+C2
10C_{4} & 10C_{4} +^{10}C_{5} & 11C_{m} \\ 11C_{6} & 11C_{6} +^{11}C_{7} & 12C_{m + 2} \\ 12C_{8} & 12C_{8} +^{12}C_{9} & 13C_{m + 4} \end{matrix} \right| = 0$$ ⇒$\Delta = \left| \begin{matrix} 10C_{4} & 11C_{5} & 11C_{m} \\ 11C_{6} & 12C_{7} & 12C_{m + 2} \\ 12C_{8} & 13C_{9} & 13C_{m + 4} \end{matrix} \right|$= 0 Clearly $m = 5$ satisfies the above result $$\lbrack\because C_{2},C_{3}\text{willbeidentical}\rbrack$$