Solveeit Logo

Question

Mathematics Question on Properties of Determinants

The value of Δ=5C05C314\[0.3em]5C15C41\[0.3em]5C25C51\Delta =\begin{vmatrix} ^5C_0 & ^5C_3 & 14 \\\[0.3em] ^5C_1 & ^5C_4 &1 \\\[0.3em] ^5C_2 & ^5C_5 & 1 \end{vmatrix} is

A

0

B

-576

C

80

D

none of these

Answer

-576

Explanation

Solution

Δ=5C05C314\[0.3em]5C15C41\[0.3em]5C25C51\Delta = \begin{vmatrix} ^5C_0 & ^5C_3 & 14 \\\[0.3em] ^5C_1 & ^5C_4 &1 \\\[0.3em] ^5C_2 & ^5C_5 & 1 \end{vmatrix} Operate R1+R2+R3R_1 + R_2 + R_3 = 5C0+5C1+5C25C3+5C4+5C514+1+1\[0.3em]551\[0.3em]1011\begin{vmatrix} ^5C_0 +^5C_1 +^5C_2& ^5C_3+^5C_4+^5C_5 & 14+1+1 \\\[0.3em] 5 & 5 &1 \\\[0.3em] 10 &1 & 1 \end{vmatrix} = 161616 551 1011=16111 551 1011\begin{vmatrix}16&16&16\\\ 5&5&1\\\ 10&1&1\end{vmatrix}=16\begin{vmatrix}1&1&1\\\ 5&5&1\\\ 10&1&1\end{vmatrix} [5C0+5C1+5C2+5C3+5C4+5C5=16\because\,^5C_0+^5C_1+^5C_2 +^5C_3+^5C_4+^5C_5 = 16 ] = 111 551 900=16×9(4)=576\begin{vmatrix}1&1&1\\\ 5&5&1\\\ 9&0&0\end{vmatrix}= 16 \times 9 \left(-4\right)=-576