Question
Mathematics Question on distance between two points
The value of ddxx2x=
A
(A) 2x2logx
B
(B) x22(1+logx)
C
(C) x2x
D
(D) 2x2x[1+logx]
Answer
(D) 2x2x[1+logx]
Explanation
Solution
Explanation:
Given:ddxx2xConcept:logxn=nlogxddx[logx]=1xLet, y=x2xTaking log on both the sides, we getlogy=log(x2x)=2xlogx(∵logxn=nlogx)Now, taking derivatives,ddx[logy]=2{ddx[x]logx+ddx[logx]x}1ydydx=2logx+x⋅1x⇒dydx=2y[1+logx]⇒dydx=2x2x1+logxHence, the correct option is (D).