Question
Question: The value of \(\csc 15{}^\circ +\sec 15{}^\circ =\) A. \(2\sqrt{3}\) B. \(\sqrt{6}\) C. \(2...
The value of csc15∘+sec15∘=
A. 23
B. 6
C. 26
D. 6+2
Solution
The angle 15∘ can be written as 15∘=45∘−30∘ .
We need to know that cscA=sinA1 and secA=cosA1 .
Some useful Trigonometric Identities:
sin(A±B)=sinAcosB±sinBcosA
cos(A±B)=cosAcosB∓sinAsinB
Values of Trigonometric Ratios for Common Angles:
| 0∘| 30∘| 45∘ | 60∘| 90∘
sin| 0| 21| 21 | 23 | 1
cos| 1| 23| 21 | 21 | 0
tan| 0| 31| 1| 3 | ∞
csc| ∞| 2| 2 | 32 | 1
sec| 1| 32 | 2 | 2| ∞
cot| ∞ | 3 | 1| 31 | 0
Complete step-by-step answer:
Let us first calculate the values of sin15∘ and cos15∘ .
Using the identity sin(A−B)=sinAcosB−sinBcosA , we get:
sin15∘=sin(45∘−30∘)=sin45∘cos30∘−sin30∘cos45∘
Substituting the values of sin45∘ , cos30∘ , etc.
⇒ sin15∘=(21)(23)−(21)(21)
⇒ sin15∘=223−1
And, using the identity cos(A−B)=cosAcosB+sinAsinB , we get:
cos15∘=cos(45∘−30∘)=cos45∘cos30∘+sin45∘sin30∘
Substituting the values of sin45∘ , cos30∘ , etc.
⇒ cos15∘=(21)(23)+(21)(21)
⇒ cos15∘=223+1
Now, csc15∘+sec15∘=sin15∘1+cos15∘1 . Substituting the values of sin15∘ and cos15∘ from above, we get:
csc15∘+sec15∘=(223−1)1+(223+1)1
= 3−122+3+122
On equating the denominators, we get:
= (3−1)(3+1)22(3+1)+(3+1)(3−1)22(3−1)
On multiplying the terms in the numerator and denominators, we get:
= 3+3−3−126+2+3−3+3−126−2
= 226+2+226−2
= 246
= 26 .
Hence, the correct answer option is C. 26 .
Note: (i) The values of trigonometric ratios for the common angles 0∘,30∘,45∘,60∘,90∘ are calculated by using Pythagoras's theorem and properties of isosceles triangles for 60∘−60∘−60∘ and 90∘−45∘−45∘ triangles.
(ii)If we know the values of trigonometric ratios for the common angles 0∘,30∘,45∘,60∘,90∘ , we can calculate the values of trigonometric ratios for angles which are sum or differences of these, like 15∘,75∘,105∘,120∘,135∘ .
(iii)We see that sin2A=2sinAcosA . Now, we can also find the values of sin3A by using the fact that 3A=2A+A , and then sin5A as 5A=3A+2A , and so on.
(iv)Since, sin2A+cos2A=1 , we can always calculate cosA from sinA , and then the other ratios follow.