Solveeit Logo

Question

Question: The value of \(\csc 15{}^\circ +\sec 15{}^\circ =\) A. \(2\sqrt{3}\) B. \(\sqrt{6}\) C. \(2...

The value of csc15+sec15=\csc 15{}^\circ +\sec 15{}^\circ =
A. 232\sqrt{3}
B. 6\sqrt{6}
C. 262\sqrt{6}
D. 6+2\sqrt{6}+\sqrt{2}

Explanation

Solution

The angle 1515{}^\circ can be written as 15=453015{}^\circ =45{}^\circ -30{}^\circ .
We need to know that cscA=1sinA\csc A=\dfrac{1}{\sin A} and secA=1cosA\sec A=\frac{1}{\cos A} .
Some useful Trigonometric Identities:
sin(A±B)=sinAcosB±sinBcosA\sin (A\pm B)=\sin A\cos B\pm \sin B\cos A
cos(A±B)=cosAcosBsinAsinB\cos (A\pm B)=\cos A\cos B\mp \sin A\sin B

Values of Trigonometric Ratios for Common Angles:

| 00{}^\circ | 3030{}^\circ | 4545{}^\circ | 6060{}^\circ | 9090{}^\circ
sin| 0| 12\dfrac{1}{2}| 12\dfrac{1}{\sqrt2} | 32\dfrac{\sqrt3}{2} | 1
cos| 1| 32\dfrac{\sqrt3}{2}| 12\dfrac{1}{\sqrt2} | 12\dfrac{1}{2} | 0
tan| 0| 13\dfrac{1}{\sqrt3}| 1| 3\sqrt3 | \infty
csc| \infty | 2| 2\sqrt2 | 23\dfrac{2}{\sqrt3} | 1
sec| 1| 23\dfrac{2}{\sqrt3} | 2\sqrt2 | 2| \infty
cot| \infty | 3\sqrt3 | 1| 13\dfrac{1}{\sqrt3} | 0

Complete step-by-step answer:
Let us first calculate the values of sin15\sin 15{}^\circ and cos15\cos 15{}^\circ .
Using the identity sin(AB)=sinAcosBsinBcosA\sin (A-B)=\sin A\cos B-\sin B\cos A , we get:
sin15=sin(4530)=sin45cos30sin30cos45\sin 15{}^\circ =\sin \left( 45{}^\circ -30{}^\circ \right)=\sin 45{}^\circ \cos 30{}^\circ -\sin 30{}^\circ \cos 45{}^\circ
Substituting the values of sin45\sin 45{}^\circ , cos30\cos 30{}^\circ , etc.
sin15=(12)(32)(12)(12)\sin 15{}^\circ =\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)
sin15=3122\sin 15{}^\circ =\dfrac{\sqrt{3}-1}{2\sqrt{2}}
And, using the identity cos(AB)=cosAcosB+sinAsinB\cos (A-B)=\cos A\cos B+\sin A\sin B , we get:
cos15=cos(4530)=cos45cos30+sin45sin30\cos 15{}^\circ =\cos \left( 45{}^\circ -30{}^\circ \right)=\cos 45{}^\circ \cos 30{}^\circ +\sin 45{}^\circ \sin 30{}^\circ
Substituting the values of sin45\sin 45{}^\circ , cos30\cos 30{}^\circ , etc.
cos15=(12)(32)+(12)(12)\cos 15{}^\circ =\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)
cos15=3+122\cos 15{}^\circ =\dfrac{\sqrt{3}+1}{2\sqrt{2}}
Now, csc15+sec15=1sin15+1cos15\csc 15{}^\circ +\sec 15{}^\circ =\dfrac{1}{\sin 15{}^\circ }+\dfrac{1}{\cos 15{}^\circ } . Substituting the values of sin15\sin 15{}^\circ and cos15\cos 15{}^\circ from above, we get:
csc15+sec15=1(3122)+1(3+122)\csc 15{}^\circ +\sec 15{}^\circ =\dfrac{1}{\left( \dfrac{\sqrt{3}-1}{2\sqrt{2}} \right)}+\dfrac{1}{\left( \dfrac{\sqrt{3}+1}{2\sqrt{2}} \right)}
= 2231+223+1\dfrac{2\sqrt{2}}{\sqrt{3}-1}+\dfrac{2\sqrt{2}}{\sqrt{3}+1}
On equating the denominators, we get:
= 22(3+1)(31)(3+1)+22(31)(3+1)(31)\dfrac{2\sqrt{2}\left( \sqrt{3}+1 \right)}{\left( \sqrt{3}-1 \right)\left( \sqrt{3}+1 \right)}+\dfrac{2\sqrt{2}\left( \sqrt{3}-1 \right)}{\left( \sqrt{3}+1 \right)\left( \sqrt{3}-1 \right)}
On multiplying the terms in the numerator and denominators, we get:
= 26+23+331+26233+31\dfrac{2\sqrt{6}+\sqrt{2}}{3+\sqrt{3}-\sqrt{3}-1}+\dfrac{2\sqrt{6}-\sqrt{2}}{3-\sqrt{3}+\sqrt{3}-1}
= 26+22+2622\dfrac{2\sqrt{6}+\sqrt{2}}{2}+\dfrac{2\sqrt{6}-\sqrt{2}}{2}
= 462\dfrac{4\sqrt{6}}{2}
= 262\sqrt{6} .
Hence, the correct answer option is C. 262\sqrt{6} .

Note: (i) The values of trigonometric ratios for the common angles 0,30,45,60,900{}^\circ ,30{}^\circ ,45{}^\circ ,60{}^\circ ,90{}^\circ are calculated by using Pythagoras's theorem and properties of isosceles triangles for 60606060{}^\circ -60{}^\circ -60{}^\circ and 90454590{}^\circ -45{}^\circ -45{}^\circ triangles.
(ii)If we know the values of trigonometric ratios for the common angles 0,30,45,60,900{}^\circ ,30{}^\circ ,45{}^\circ ,60{}^\circ ,90{}^\circ , we can calculate the values of trigonometric ratios for angles which are sum or differences of these, like 15,75,105,120,13515{}^\circ ,75{}^\circ ,105{}^\circ ,120{}^\circ ,135{}^\circ .
(iii)We see that sin2A=2sinAcosA\sin 2A=2\sin A\cos A . Now, we can also find the values of sin3A\sin 3A by using the fact that 3A=2A+A3A = 2A + A , and then sin5A\sin 5A as 5A=3A+2A5A = 3A + 2A , and so on.
(iv)Since, sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1 , we can always calculate cosA\cos A from sinA\sin A , and then the other ratios follow.