Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The value of cot(n=150tan1(11+n+n2))\cot\left(\sum_{n=1}^{50} \tan^{-1}\left(\frac{1}{1+n+n^2}\right)\right) is

A

2625\frac{26}{25}

B

2526\frac{25}{26}

C

5051\frac{50}{51}

D

5251\frac{52}{51}

Answer

2625\frac{26}{25}

Explanation

Solution

cot(n=150tan1(11+n+n2))\cot\left(\sum_{n=1}^{50} \tan^{-1}\left(\frac{1}{1+n+n^2}\right)\right)

cot(n=150tan1(n+1n1+(n+1)n))\cot\left(\sum_{n=1}^{50} \tan^{-1}\left(\frac{n+1-n}{1+(n+1)n}\right)\right)

cot(n=150(tan1(n+1)tan1(n)))\cot\left(\sum_{n=1}^{50} (\tan^{-1}(n+1) - \tan^{-1}(n))\right)

cot(tan1(51)tan1(1))\cot(\tan^{-1}(51) - \tan^{-1}(1))

cot(tan1(5111+51))\cot(\tan^{-1}(\frac{51-1}{1+51}))

cot(cot1(5250))\cot(\cot^{-1}(\frac{52}{50}))
=2625=\frac{26}{25}