Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

The value of cot(n=119cot1(1+p=1n2p))\cot\left(\sum\limits^{19}_{n=1} \cot^{-1} \left(1+ \sum\limits^{n}_{p=1} 2p\right)\right) is :

A

2223\frac{22}{23}

B

2322\frac{23}{22}

C

2119\frac{21}{19}

D

1921\frac{19}{21}

Answer

2119\frac{21}{19}

Explanation

Solution

cot(n=119cot1(1+n(n+1)))\cot\left(\sum^{19}_{n=1} \cot^{-1} \left(1+n\left(n+1\right)\right)\right)
cot(n=119cot1(n2+n+1))=cot(n=119tan111+n(n+1))\cot\left(\sum^{19}_{n=1} \cot^{-1}\left(n^{2}+n+1\right)\right) = \cot\left(\sum^{19}_{n=1} \tan^{-1} \frac{1}{1+n\left(n+1\right)}\right)
n=119(tan1(n+1)tan1n)\sum^{19}_{n=1} \left(\tan^{-1}\left(n+1\right)-\tan^{-1}n\right)
cot(tan120tan11)=cotAcotβ+1cotβcotA\cot\left(\tan^{-1}20 -\tan^{-1}1\right)= \frac{\cot A \cot\beta+1}{\cot\beta-\cot A}
(Where tanA=20,tanB=1\tan A=20, \tan B=1 )
1(120)+11120=2119\frac{1\left(\frac{1}{20}\right)+1}{1- \frac{1}{20}} = \frac{21}{19}