Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

The value of cot(cosec153+tan123)\cot \left(cosec^{-1}\frac{5}{3}+\tan^{-1}\frac{2}{3}\right) is

A

517\frac{5}{17}

B

617\frac{6}{17}

C

317\frac{3}{17}

D

417\frac{4}{17}

Answer

617\frac{6}{17}

Explanation

Solution

cosec153=sin135=tan134cosec^{-1} \frac{5}{3} = sin ^{-1} \frac{3}{5} = tan^{-1} \frac{3}{4} cot(cosec153+tan123)\therefore cot\left(cosec^{-1} \frac{5}{3} +tan^{-1} \frac{2}{3}\right) =cot(tan134+tan123)= cot \left(tan^{-1} \frac{3}{4} + tan^{-1} \frac{2}{3}\right) =cot(tan134+23134×23)= cot\left( tan^{-1} \frac{ \frac{3}{4}+\frac{2}{3}}{1- \frac{3}{4} \times \frac{2}{3}}\right) =cot(tan1171212)= cot \left(tan^{-1} \frac{\frac{17}{12}}{\frac{1}{2}}\right) =cot(tan1176)= cot(tan^{-1} \frac {17}{6}) =cot(cot1617)= cot\left(cot^{-1} \frac{6}{17}\right) =617 = \frac{6}{17}