Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The value of cot^{-1}\left\\{\frac{\sqrt{1-sin\,x}+\sqrt{1+sin\,x}}{\sqrt{1-sin\,x}-\sqrt{1+sin\,x}}\right\\}\left(0 < x < \frac{\pi}{2}\right) is

A

πx2\pi-\frac{x}{2}

B

2πx2\pi -x

C

x2\frac{x}{2}

D

x2π\frac{x}{2}-\pi

Answer

πx2\pi-\frac{x}{2}

Explanation

Solution

Since, 1±sinx=(cosx2±sinx2)21\pm sin\,x=\left(cos \frac{x}{2}\pm sin \frac{x}{2}\right)^{2} \therefore cot^{-1}\left\\{\frac{\sqrt{1-sin\,x}+\sqrt{1+sin\,x}}{\sqrt{1-sin\,x}-\sqrt{1+sin\,x}}\right\\} =cot1[(cosx2sinx2)+(cosx2+sinx2)(cosx2sinx2)(cosx2+sinx2)]=cot^{-1}\left[\frac{\left(cos \frac{x}{2}-sin \frac{x}{2}\right)+\left(cos \frac{x}{2}+sin \frac{x}{2}\right)}{\left(cos \frac{x}{2}-sin \frac{x}{2}\right)-\left(cos \frac{x}{2}+sin \frac{x}{2}\right)}\right] =cot^{-1}\left\\{-cot \frac{x}{2}\right\\}=cot^{-1}\left\\{cot\left(\pi-\frac{\pi}{2}\right)\right\\}=\pi-\frac{x}{2}