Question
Mathematics Question on Inverse Trigonometric Functions
The value of cot^{-1}\left\\{\frac{\sqrt{1-sin\,x}+\sqrt{1+sin\,x}}{\sqrt{1-sin\,x}-\sqrt{1+sin\,x}}\right\\}\left(0 < x < \frac{\pi}{2}\right) is
A
π−2x
B
2π−x
C
2x
D
2x−π
Answer
π−2x
Explanation
Solution
Since, 1±sinx=(cos2x±sin2x)2 \therefore cot^{-1}\left\\{\frac{\sqrt{1-sin\,x}+\sqrt{1+sin\,x}}{\sqrt{1-sin\,x}-\sqrt{1+sin\,x}}\right\\} =cot−1[(cos2x−sin2x)−(cos2x+sin2x)(cos2x−sin2x)+(cos2x+sin2x)] =cot^{-1}\left\\{-cot \frac{x}{2}\right\\}=cot^{-1}\left\\{cot\left(\pi-\frac{\pi}{2}\right)\right\\}=\pi-\frac{x}{2}