Solveeit Logo

Question

Question: The value of \[{\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 - ...

The value of cot1[1+sinx+1sinx1sinx1+sinx]{\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] is equal to (where x(0,π2)x \in \left( {\left. {0,\dfrac{\pi }{2}} \right)} \right. )
A. πx\pi - x
B. 2πx2\pi - x
C. x2\dfrac{x}{2}
D. πx2\pi - \dfrac{x}{2}

Explanation

Solution

Hint : The given question might seem very lengthy at first, but the important attribute to pay attention to is that we can solve the term1sinx\sqrt {1 - \sin x} into simpler terms and same is the case for 1+sinx\sqrt {1 + \sin x} . We can solve them using the formula for the double angle of sine which goes as follows,
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
The question will become very easy upon solving this part and then we can get the values inside in terms of cot so that we can easily cancel the inverse function of cot present in the question, to get our answer.

Complete step-by-step answer :
We can write from the double angle of sine as,
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
Replacing xx by x2\dfrac{x}{2} , we get,
sinx=2sinx2cosx2\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}
Adding 11 to both sides we get,
1+sinx=1+2sinx2cosx21 + \sin x = 1 + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}
As sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
sin2x2+cos2x2=1{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1
1+sinx=sin2x2+cos2x2+2sinx2cosx2   1 + \sin x = {\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \;
This becomes,
1+sinx=sinx2+cosx2\sqrt {1 + \sin x} = \sin \dfrac{x}{2} + \cos \dfrac{x}{2}
The same will be the case upon solving for 1sinx\sqrt {1 - \sin x}
Which will give,
1sinx=cosx2sinx2\sqrt {1 - \sin x} = \cos \dfrac{x}{2} - \sin \dfrac{x}{2}
This will result in the question being reduced to
cot1[sinx2+cosx2+cosx2sinx2sinx2+cosx2cosx2sinx2]{\cot ^{ - 1}}\left[ {\dfrac{{\sin \dfrac{x}{2} + \cos \dfrac{x}{2} + \cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}{{-\sin \dfrac{x}{2} + \cos \dfrac{x}{2} - \cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}} \right]
Upon solving this question we get,
cot1[2cosx22sinx2]{\cot ^{ - 1}}\left[ {\dfrac{{2\cos \dfrac{x}{2}}}{{-2\sin \dfrac{x}{2}}}} \right]
Since we know the formula,
cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} ,
We can write as,
cot1(cot(x2)){\cot ^{ - 1}}\left( {\cot \left( {\dfrac{-x}{2}} \right)} \right)
πx2\Rightarrow \pi - \dfrac{x}{2}
Since cot1{\cot ^{ - 1}}and cot\cot can be cancelled as they are inverse of each other, but it will be πx2\pi - \dfrac{x}{2} as there is negative inside the inverse function.
πx2\Rightarrow \pi - \dfrac{x}{2}
Which results in the answer of the question being DD .
So, the correct answer is “Option D”.

Note : The cot1{\cot ^{ - 1}} function is the function which is the inverse of the trigonometric function cot\cot which stands for the cotangent function which is the reciprocal of the tangent function, this function is called as inverse cot function, this function gives the values of the radian at which the cotangent becomes a specific values when a value of the cotangent is entered. The function only gives output in radian not in degrees.