Solveeit Logo

Question

Question: The value of $(\cos\alpha + \cos\beta)^2 + (\sin\alpha + \sin\beta)^2$ is...

The value of (cosα+cosβ)2+(sinα+sinβ)2(\cos\alpha + \cos\beta)^2 + (\sin\alpha + \sin\beta)^2 is

Answer

2 + 2cos(α-β)

Explanation

Solution

We simplify by expanding the squares:

(cosα+cosβ)2=cos2α+2cosαcosβ+cos2β(\cos\alpha + \cos\beta)^2 = \cos^2\alpha + 2\cos\alpha\cos\beta + \cos^2\beta (sinα+sinβ)2=sin2α+2sinαsinβ+sin2β(\sin\alpha + \sin\beta)^2 = \sin^2\alpha + 2\sin\alpha\sin\beta + \sin^2\beta

Adding,

cos2α+sin2α+cos2β+sin2β+2(cosαcosβ+sinαsinβ)\cos^2\alpha + \sin^2\alpha + \cos^2\beta + \sin^2\beta + 2(\cos\alpha\cos\beta + \sin\alpha\sin\beta)

Since cos2θ+sin2θ=1\cos^2\theta+\sin^2\theta=1 for any angle,

=1+1+2(cosαcosβ+sinαsinβ)=2+2cos(αβ)= 1 + 1 + 2(\cos\alpha\cos\beta+\sin\alpha\sin\beta) = 2 + 2\cos(\alpha-\beta)

Thus, the value is:

2+2cos(αβ)2 + 2\cos(\alpha-\beta)

Expand both squares, use the Pythagorean identity, and recognize the cosine addition formula.