Question
Question: The value of $(\cos\alpha + \cos\beta)^2 + (\sin\alpha + \sin\beta)^2$ is...
The value of (cosα+cosβ)2+(sinα+sinβ)2 is

Answer
2 + 2cos(α-β)
Explanation
Solution
We simplify by expanding the squares:
(cosα+cosβ)2=cos2α+2cosαcosβ+cos2β (sinα+sinβ)2=sin2α+2sinαsinβ+sin2βAdding,
cos2α+sin2α+cos2β+sin2β+2(cosαcosβ+sinαsinβ)Since cos2θ+sin2θ=1 for any angle,
=1+1+2(cosαcosβ+sinαsinβ)=2+2cos(α−β)Thus, the value is:
2+2cos(α−β)Expand both squares, use the Pythagorean identity, and recognize the cosine addition formula.