Solveeit Logo

Question

Question: The value of cos–1\(\sqrt{\frac{2}{3}}\) – cos–1\(\frac{\sqrt{6} + 1}{2\sqrt{3}}\) is equal to –...

The value of cos–123\sqrt{\frac{2}{3}} – cos–16+123\frac{\sqrt{6} + 1}{2\sqrt{3}} is equal to –

A

π12\frac{\pi}{12}

B

π8\frac{\pi}{8}

C

π6\frac{\pi}{6}

D

π3\frac{\pi}{3}

Answer

π6\frac{\pi}{6}

Explanation

Solution

I = tan–1 (12)\left( \frac{1}{\sqrt{2}} \right)– tan–1{12(1+26)(6+1)}\left\{ \frac{\sqrt{12 - ( - 1 + 2\sqrt{6})}}{(\sqrt{6} + 1)} \right\}

= tan–1 (12)\left( \frac{1}{\sqrt{2}} \right)– tan–1(5266+1)\left( \frac{\sqrt{5 - 2\sqrt{6}}}{\sqrt{6} + 1} \right)

= tan–1 (12)\left( \frac{1}{\sqrt{2}} \right)– tan–1(321+6)\left( \frac{\sqrt{3} - \sqrt{2}}{1 + \sqrt{6}} \right)

= tan–1 (12)\left( \frac{1}{\sqrt{2}} \right)– tan–1 3\sqrt{3} + tan–12\sqrt{2}

= π2\frac{\pi}{2}π3\frac{\pi}{3} = π6\frac{\pi}{6}.