Solveeit Logo

Question

Question: The value of \(\cos y\cos\left( \frac{\pi}{2} - x \right) - \cos\left( \frac{\pi}{2} - y \right)\cos...

The value of cosycos(π2x)cos(π2y)cosx\cos y\cos\left( \frac{\pi}{2} - x \right) - \cos\left( \frac{\pi}{2} - y \right)\cos x

+sinycos(π2x)+cosxsin(π2y)+ \sin y\cos\left( \frac{\pi}{2} - x \right) + \cos x\sin\left( \frac{\pi}{2} - y \right) is zero, if

A

x=0x = 0

B

y=0y = 0

C

x=yx = y

D

x=nππ4+y,(nI)x = n\pi - \frac{\pi}{4} + y,(n \in I)

Answer

x=nππ4+y,(nI)x = n\pi - \frac{\pi}{4} + y,(n \in I)

Explanation

Solution

The expression is equal to

sin(xy)+cos(xy)=2{sin(π4+xy)}\sin(x - y) + \cos(x - y) = \sqrt{2}\left\{ \sin\left( \frac{\pi}{4} + x - y \right) \right\},

which is zero, if sin(π4+xy)=0\sin\left( \frac{\pi}{4} + x - y \right) = 0

i.e., π4+xy=nπ(nI)x=nππ4+y\frac{\pi}{4} + x - y = n\pi(n \in I) \Rightarrow x = n\pi - \frac{\pi}{4} + y.