Solveeit Logo

Question

Question: The value of \( \cos y\cos \left( {\dfrac{\pi }{2} - x} \right) - \cos \left( {\dfrac{\pi }{2} - y} ...

The value of cosycos(π2x)cos(π2y)cosx+sinycos(π2x)+cosxsin(π2y)\cos y\cos \left( {\dfrac{\pi }{2} - x} \right) - \cos \left( {\dfrac{\pi }{2} - y} \right)\cos x + \sin y\cos \left( {\dfrac{\pi }{2} - x} \right) + \cos x\sin \left( {\dfrac{\pi }{2} - y} \right) is zero if
(A) x=0x = 0
(B) y=0y = 0
(C) x=yx = y
(D) x=nππ4+y,nIx = n\pi - \dfrac{\pi }{4} + y,n \in I

Explanation

Solution

Hint : In the given question, we are provided with the value of an expression involving trigonometric functions. So, we have to find the value of x and y. The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as cos(π2x)=sinx\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x and sin(π2y)=cosy\sin \left( {\dfrac{\pi }{2} - y} \right) = \cos y . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem.

Complete step-by-step answer :
In the given problem, we are given that,
cosycos(π2x)cos(π2y)cosx+sinycos(π2x)+cosxsin(π2y)=0\cos y\cos \left( {\dfrac{\pi }{2} - x} \right) - \cos \left( {\dfrac{\pi }{2} - y} \right)\cos x + \sin y\cos \left( {\dfrac{\pi }{2} - x} \right) + \cos x\sin \left( {\dfrac{\pi }{2} - y} \right) = 0
Now, we know that sine and cosine trigonometric functions are complementary functions. So, we use the trigonometric formulae cos(π2x)=sinx\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x and sin(π2y)=cosy\sin \left( {\dfrac{\pi }{2} - y} \right) = \cos y in the given expression. So, we get,
cosysinxsinycosx+sinysinx+cosxcosy=0\Rightarrow \cos y\sin x - \sin y\cos x + \sin y\sin x + \cos x\cos y = 0
Now, we group the trigonometric terms in a systematic order. So, we get,
(sinxcosycosxsiny)+(cosxcosy+sinysinx)=0\Rightarrow \left( {\sin x\cos y - \cos x\sin y} \right) + \left( {\cos x\cos y + \sin y\sin x} \right) = 0
Now, we know the compound angle formulae for sine and cosine trigonometric functions. So, we use the trigonometric formulae sinxcosycosxsiny=sin(xy)\sin x\cos y - \cos x\sin y = \sin \left( {x - y} \right) and cosxcosy+sinysinx=cos(xy)\cos x\cos y + \sin y\sin x = \cos \left( {x - y} \right) . So, we get,
sin(xy)+cos(xy)=0\Rightarrow \sin \left( {x - y} \right) + \cos \left( {x - y} \right) = 0
Now, we shift the terms in the equation and find the value of the tangent of the angle. So, we get,
sin(xy)=cos(xy)\Rightarrow \sin \left( {x - y} \right) = - \cos \left( {x - y} \right)
sin(xy)cos(xy)=1\Rightarrow \dfrac{{\sin \left( {x - y} \right)}}{{\cos \left( {x - y} \right)}} = - 1
tan(xy)=1\Rightarrow \tan \left( {x - y} \right) = - 1
tan(xy)=tan(π4)\Rightarrow \tan \left( {x - y} \right) = \tan \left( { - \dfrac{\pi }{4}} \right)
So, we get the equation in tan(A)=tan(B)\tan \left( A \right) = \tan \left( B \right) form. So, the general solution of this equation is of the form A=nπ+BA = n\pi + B , where n is any integer.
So, we have, tan(xy)=tan(π4)\tan \left( {x - y} \right) = \tan \left( { - \dfrac{\pi }{4}} \right) .
Hence, xy=nπ+(π4)x - y = n\pi + \left( { - \dfrac{\pi }{4}} \right) , where n is an integer.
So, we get the value of x as x=nπ+(π4)+y,nIx = n\pi + \left( { - \dfrac{\pi }{4}} \right) + y,n \in I
Hence, option (D) is the correct answer.
So, the correct answer is “Option D”.

Note : Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart such as: sin(π2y)=cosy\sin \left( {\dfrac{\pi }{2} - y} \right) = \cos y and tan(x)=sin(x)cos(x)\tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}} . Besides these simple trigonometric formulae, we should remember the formats of general trigonometric solutions such as tan(A)=tan(B)\tan \left( A \right) = \tan \left( B \right) . Take care while doing the calculations so as to be sure of the final answer.