Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The value of cos[tan1sin(cot1x)]\cos [{{\tan }^{-1}}\\{\sin ({{\cot }^{-1}}x)\\}] is

A

x2+1x21\sqrt{\frac{{{x}^{2}}+1}{{{x}^{2}}-1}}

B

1x2x2+2\sqrt{\frac{1-{{x}^{2}}}{{{x}^{2}}+2}}

C

1x21+x2\sqrt{\frac{1-{{x}^{2}}}{1+{{x}^{2}}}}

D

x2+1x2+2\sqrt{\frac{{{x}^{2}}+1}{{{x}^{2}}+2}}

Answer

x2+1x2+2\sqrt{\frac{{{x}^{2}}+1}{{{x}^{2}}+2}}

Explanation

Solution

cos[tan1sin(cot1x)]\cos [{{\tan }^{-1}}\\{\sin ({{\cot }^{-1}}x)\\}]
=\cos \left[ {{\tan }^{-1}}\left\\{ \sin \frac{1}{\sqrt{1+{{x}^{2}}}} \right\\} \right]
=cos[tan111+x2]=\cos \left[ {{\tan }^{-1}}\frac{1}{\sqrt{1+{{x}^{2}}}} \right]
=cos[cos11+x22+x2]=\cos \left[ {{\cos }^{-1}}\sqrt{\frac{1+{{x}^{2}}}{2+{{x}^{2}}}} \right]
=1+x22+x2=\sqrt{\frac{1+{{x}^{2}}}{2+{{x}^{2}}}}