Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

The value of \cos \left\\{ \sin^{-1} \frac{3}{5} \right\\} is :

A

35\frac{3}{5}

B

45\frac{4}{5}

C

46- \frac{4}{6}

D

53- \frac{5}{3}

Answer

45\frac{4}{5}

Explanation

Solution

Let sin1(35)=θ35=sinθ\sin^{-1} \left(\frac{3}{5}\right) = \theta \Rightarrow \frac{3}{5} = \sin\theta We know cosθ=1sin2θ\cos\theta = \sqrt{1- \sin^{2} \theta} =1925=1625=45= \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} cos[sin1(35)]=cosθ=45\therefore \cos\left[\sin^{-1} \left(\frac{3}{5}\right) \right] = \cos\theta = \frac{4}{5}