Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of \cos \left( \frac{3\pi }{2}+x \right)\,\cos \,(2\pi +x)\left\\{ \cot \left( \frac{3\pi }{2}-x \right)+\cot \,(2\pi +x) \right\\} is

A

00

B

11

C

cos xcos\text{ }x

D

sin xsin\text{ }x

Answer

11

Explanation

Solution

cos(3π2+x)cos(2π+x)\cos \left( \frac{3\pi }{2}+x \right)\cos (2\pi +x)\,
\left\\{ \cot \left( \frac{3\pi }{2}-x \right)\,+\cot \,(2\pi +x) \right\\} =\sin x.\cos x\,(\tan \,x+\,\cot \,x\\}
=sinx.cosx(sin2x+cos2xsinx.cosx)=\sin x.\cos x\left( \frac{{{\sin }^{2}}x+{{\cos }^{2}}x}{\sin x.\cos x} \right)
=1=1
(sin2θ+cos2θ=1)(\because \,\,\,{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1)