Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The value of cos(12cos118)\cos \left(\frac{1}{2} \cos^{-1} \frac{1}{8}\right) is equal to

A

34\frac{3}{4}

B

34 - \frac{3}{4}

C

116\frac{1}{16}

D

14\frac{1}{4}

Answer

34\frac{3}{4}

Explanation

Solution

Let cos118=θwhere0<θ<π\cos^{-1} \frac{1}{8} = \theta \,where \,0 < \theta < \pi cos(12cos118)=cosθ2\Rightarrow \cos\left(\frac{1}{2} \cos^{-1} \frac{1}{8}\right) = \cos \frac{\theta}{2} Now cos118=θcosθ=18 \cos^{-1} \frac{1}{8 } = \theta \Rightarrow \cos\theta = \frac{1}{8} 2cos2θ21=18cosθ2=34\Rightarrow 2 \cos^{2} \frac{\theta}{2} - 1 = \frac{1}{8} \Rightarrow \cos \frac{\theta}{2} = \frac{3}{4} [0<θ2<π2,cosπ234]\left[\because 0 < \frac{\theta}{2} < \frac{\pi}{2}, \cos \frac{\pi}{2} \ne - \frac{3}{4}\right]