Solveeit Logo

Question

Question: The value of \[\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \righ...

The value of cos(π22).cos(π23)......cos(π210)×sin(π210)\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \right)......\cos \left( \dfrac{\pi }{{{2}^{10}}} \right)\times \sin \left( \dfrac{\pi }{{{2}^{10}}} \right) is
(a) 1256\dfrac{1}{256}
(b) 12\dfrac{1}{2}
(c) 1512\dfrac{1}{512}
(d) 11024\dfrac{1}{1024}

Explanation

Solution

We have to find the value of cos(π22).cos(π23)......cos(π210).sin(π210)\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \right)......\cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\sin \left( \dfrac{\pi }{{{2}^{10}}} \right)
We have cosθ.cos(2θ).....cos(2n1θ)=sin(2nθ)2nsinθ\cos \theta .\cos \left( 2\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }
So we will take θ=π210\theta =\dfrac{\pi }{{{2}^{10}}} and then our original equation will become as follows. cosθ.cos(2θ)......cos(28θ)×sin(θ)\cos \theta .\cos \left( 2\theta \right)......\cos \left( {{2}^{8}}\theta \right)\times \sin \left( \theta \right) , now we will apply the above mentioned rule in order to simplify cos\cos terms. And at last we will take back θ\theta as π210\dfrac{\pi }{{{2}^{10}}} and simplify it to get our solution.

Complete step-by-step answer:
We have been asked in the given question that we have to find the value of the expression, that is, cos(π22).cos(π23)......cos(π210).sin(π210)\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \right)......\cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\sin \left( \dfrac{\pi }{{{2}^{10}}} \right)
And we know the relation that,
cosθ.cos(2θ).....cos(2n1θ)=sin(2nθ)2nsinθ\cos \theta .\cos \left( 2\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }
Now Let us consider the value of the term, π210\dfrac{\pi }{{{2}^{10}}} as θ\theta
θ=π210\Rightarrow \theta =\dfrac{\pi }{{{2}^{10}}}
Then π29=π210×2\dfrac{\pi }{{{2}^{9}}}=\dfrac{\pi }{{{2}^{10}}}\times 2
 π29=2θ [as θ=π210]\text{ }\dfrac{\pi }{{{2}^{9}}}=2\theta \text{ }\left[ as\text{ }\theta =\dfrac{\pi }{{{2}^{10}}} \right]
Similarly we will get,
π28=π210×22  =22θ \begin{aligned} & \dfrac{\pi }{{{2}^{8}}}=\dfrac{\pi }{{{2}^{10}}}\times {{2}^{2}} \\\ & \text{ }={{2}^{2}}\theta \\\ \end{aligned}
And so on upto,
π22=π210×28 [as 2108=22]\dfrac{\pi }{{{2}^{2}}}=\dfrac{\pi }{{{2}^{10}}}\times {{2}^{8}}\text{ }\left[ as\text{ }{{2}^{10-8}}={{2}^{2}} \right]
So, we will get,
π22=28θ\dfrac{\pi }{{{2}^{2}}}={{2}^{8}}\theta
So our equation which was given in the question that is,
cos(π22).cos(π23)......cos(π210).sin(π210)\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \right)......\cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\sin \left( \dfrac{\pi }{{{2}^{10}}} \right)
Becomes as follows.
cos(28θ).cos(27θ).cos(26θ)........cos(θ).sinθ\cos \left( {{2}^{8}}\theta \right).\cos \left( {{2}^{7}}\theta \right).\cos \left( {{2}^{6}}\theta \right)........\cos \left( \theta \right).\sin \theta
And on rearranging the above expression a little bit we will get,
cos(θ).cos(2θ).cos(22θ).........cos(28θ).sinθ(1)\cos \left( \theta \right).\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).........\cos \left( {{2}^{8}}\theta \right).\sin \theta ----\left( 1 \right)
Now we know the relation that,
cosθ.cos(2θ).cos(22θ).....cos(2n1θ)=sin(2nθ)2nsinθ\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }
So, on applying this,
cosθ.cos(2θ)......cos(28θ)\cos \theta .\cos \left( 2\theta \right)......\cos \left( {{2}^{8}}\theta \right)
We have n1=8 n=8+1=9n-1=8\text{ }\Rightarrow n=8+1=9
So we will get,
cosθ.cos(2θ).cos(22θ).....cos(28θ)=sin(29θ)29(sinθ)\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right)=\dfrac{\sin \left( {{2}^{9}}\theta \right)}{{{2}^{9}}\left( \sin \theta \right)}
Now, on putting this value in (1)\left( 1 \right) we will get,
cosθ.cos(2θ).cos(22θ).....cos(28θ).sinθ=sin(29θ)29(sinθ)×sinθ\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right).\sin \theta =\dfrac{\sin \left( {{2}^{9}}\theta \right)}{{{2}^{9}}\left( \sin \theta \right)}\times \sin \theta
So on simplifying it further we will get,
cosθ.cos(2θ).cos(22θ).....cos(28θ).sinθ=sin(29θ)29\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right).\sin \theta =\dfrac{\sin \left( {{2}^{9}}\theta \right)}{{{2}^{9}}}
Now, on putting θ\theta back as π210\dfrac{\pi }{{{2}^{10}}} , we will get the equation as,

& \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{\sin \left( {{2}^{9}}\dfrac{\pi }{{{2}^{10}}} \right)}{{{2}^{9}}} \\\ & \Rightarrow \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{\sin \left( \dfrac{\pi }{2} \right)}{{{2}^{9}}} \\\ \end{aligned}$$ We know that, $$\sin \left( \dfrac{\pi }{2} \right)=1$$ so we will get, $$\Rightarrow \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{1}{{{2}^{9}}}$$ $$\Rightarrow \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{1}{512}$$ Hence we get that the correct option is option (c), that is, $$\dfrac{1}{512}$$ **So, the correct answer is “Option c”.** **Note:** We have the equation, $\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }$ So, errors like, taking $n-1$ as $n$ usually can happen while solving this question. Apply this on, $$\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right)$$ We will have ${{2}^{n-1}}={{2}^{8}}$ $\begin{aligned} & \text{ }\Rightarrow n-1=8 \\\ & \text{ }\Rightarrow n=8+1 \\\ & \text{ }=9 \\\ \end{aligned}$ Also, mistakes like, taking $n$ directly as $8$ will lead to getting an incorrect solution.