Solveeit Logo

Question

Question: The value of \(\cos \left( {\dfrac{{2\pi }}{{15}}} \right)\cos \left( {\dfrac{{4\pi }}{{15}}} \right...

The value of cos(2π15)cos(4π15)cos(8π15)cos(16π15)\cos \left( {\dfrac{{2\pi }}{{15}}} \right)\cos \left( {\dfrac{{4\pi }}{{15}}} \right)\cos \left( {\dfrac{{8\pi }}{{15}}} \right)\cos \left( {\dfrac{{16\pi }}{{15}}} \right) ?
A. 12\dfrac{1}{2}
B. 14\dfrac{1}{4}
C. 18\dfrac{1}{8}
D. 116\dfrac{1}{{16}}

Explanation

Solution

The given question requires evaluating the product of multiple cosines of different angles that are in geometric progression with each other. The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as cos(π+x)=cosx\cos (\pi + x) = - \cos x and sin2x=2sinxcosx\sin 2x = 2\sin x\cos x. Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem.

Complete step by step answer:
In the given problem, we have, cos(2π15)cos(4π15)cos(8π15)cos(16π15)\cos \left( {\dfrac{{2\pi }}{{15}}} \right)\cos \left( {\dfrac{{4\pi }}{{15}}} \right)\cos \left( {\dfrac{{8\pi }}{{15}}} \right)\cos \left( {\dfrac{{16\pi }}{{15}}} \right).
So, we have to simplify the expression using the trigonometric formulae.
We know the trigonometric formula cos(π+x)=cosx\cos (\pi + x) = - \cos x. Using the same in the problem, we get,
cos(2π15)cos(4π15)cos(8π15)cos(π+π15)\Rightarrow \cos \left( {\dfrac{{2\pi }}{{15}}} \right)\cos \left( {\dfrac{{4\pi }}{{15}}} \right)\cos \left( {\dfrac{{8\pi }}{{15}}} \right)\cos \left( {\pi + \dfrac{\pi }{{15}}} \right)
[cos(π15)]cos(2π15)cos(4π15)cos(8π15)\Rightarrow \left[ { - \cos \left( {\dfrac{\pi }{{15}}} \right)} \right]\cos \left( {\dfrac{{2\pi }}{{15}}} \right)\cos \left( {\dfrac{{4\pi }}{{15}}} \right)\cos \left( {\dfrac{{8\pi }}{{15}}} \right)
Now, we multiply the numerator and denominator by 2sin(π15)2\sin \left( {\dfrac{\pi }{{15}}} \right).
[2sin(π15)cos(π15)]cos(2π15)cos(4π15)cos(8π15)2sin(π15)\Rightarrow \dfrac{{\left[ { - 2\sin \left( {\dfrac{\pi }{{15}}} \right)\cos \left( {\dfrac{\pi }{{15}}} \right)} \right]\cos \left( {\dfrac{{2\pi }}{{15}}} \right)\cos \left( {\dfrac{{4\pi }}{{15}}} \right)\cos \left( {\dfrac{{8\pi }}{{15}}} \right)}}{{2\sin \left( {\dfrac{\pi }{{15}}} \right)}}

Using the trigonometric formulae sin2x=2sinxcosx\sin 2x = 2\sin x\cos x, we get,
[sin(2π15)]cos(2π15)cos(4π15)cos(8π15)2sin(π15)\Rightarrow \dfrac{{\left[ { - \sin \left( {\dfrac{{2\pi }}{{15}}} \right)} \right]\cos \left( {\dfrac{{2\pi }}{{15}}} \right)\cos \left( {\dfrac{{4\pi }}{{15}}} \right)\cos \left( {\dfrac{{8\pi }}{{15}}} \right)}}{{2\sin \left( {\dfrac{\pi }{{15}}} \right)}}
Now, we multiply the numerator and denominator by 22.
[2sin(2π15)cos(2π15)]cos(4π15)cos(8π15)2×2sin(π15)\Rightarrow \dfrac{{\left[ { - 2\sin \left( {\dfrac{{2\pi }}{{15}}} \right)\cos \left( {\dfrac{{2\pi }}{{15}}} \right)} \right]\cos \left( {\dfrac{{4\pi }}{{15}}} \right)\cos \left( {\dfrac{{8\pi }}{{15}}} \right)}}{{2 \times 2\sin \left( {\dfrac{\pi }{{15}}} \right)}}
Using the trigonometric formulae sin2x=2sinxcosx\sin 2x = 2\sin x\cos x, we get,
[sin(4π15)]cos(4π15)cos(8π15)4sin(π15)\Rightarrow \dfrac{{\left[ { - \sin \left( {\dfrac{{4\pi }}{{15}}} \right)} \right]\cos \left( {\dfrac{{4\pi }}{{15}}} \right)\cos \left( {\dfrac{{8\pi }}{{15}}} \right)}}{{4\sin \left( {\dfrac{\pi }{{15}}} \right)}}

So, we multiply the numerator and denominator by 22.
[2sin(4π15)cos(4π15)]cos(8π15)2×4sin(π15)\Rightarrow \dfrac{{\left[ { - 2\sin \left( {\dfrac{{4\pi }}{{15}}} \right)\cos \left( {\dfrac{{4\pi }}{{15}}} \right)} \right]\cos \left( {\dfrac{{8\pi }}{{15}}} \right)}}{{2 \times 4\sin \left( {\dfrac{\pi }{{15}}} \right)}}
Using the trigonometric formulae sin2x=2sinxcosx\sin 2x = 2\sin x\cos x, we get,
[sin(8π15)]cos(8π15)8sin(π15)\Rightarrow \dfrac{{\left[ { - \sin \left( {\dfrac{{8\pi }}{{15}}} \right)} \right]\cos \left( {\dfrac{{8\pi }}{{15}}} \right)}}{{8\sin \left( {\dfrac{\pi }{{15}}} \right)}}
So, we multiply the numerator and denominator by 22.
[2sin(8π15)]cos(8π15)2×8sin(π15)\Rightarrow \dfrac{{\left[ { - 2\sin \left( {\dfrac{{8\pi }}{{15}}} \right)} \right]\cos \left( {\dfrac{{8\pi }}{{15}}} \right)}}{{2 \times 8\sin \left( {\dfrac{\pi }{{15}}} \right)}}
Using the trigonometric formulae sin2x=2sinxcosx\sin 2x = 2\sin x\cos x, we get,
[sin(16π15)]16sin(π15)\Rightarrow \dfrac{{\left[ { - \sin \left( {\dfrac{{16\pi }}{{15}}} \right)} \right]}}{{16\sin \left( {\dfrac{\pi }{{15}}} \right)}}

Now, we know the trigonometric formula sin(π+θ)=sinθ\sin \left( {\pi + \theta } \right) = - \sin \theta . So, we get,
[sin(π+π15)]16sin(π15)\Rightarrow \dfrac{{\left[ { - \sin \left( {\pi + \dfrac{\pi }{{15}}} \right)} \right]}}{{16\sin \left( {\dfrac{\pi }{{15}}} \right)}}
sin(π15)16sin(π15)\Rightarrow \dfrac{{\sin \left( {\dfrac{\pi }{{15}}} \right)}}{{16\sin \left( {\dfrac{\pi }{{15}}} \right)}}
Cancelling the common factors in numerator and denominator,
116\Rightarrow \dfrac{1}{{16}}
So, the value of cos(2π15)cos(4π15)cos(8π15)cos(16π15)\cos \left( {\dfrac{{2\pi }}{{15}}} \right)\cos \left( {\dfrac{{4\pi }}{{15}}} \right)\cos \left( {\dfrac{{8\pi }}{{15}}} \right)\cos \left( {\dfrac{{16\pi }}{{15}}} \right) is 116\dfrac{1}{{16}}.

Hence, option D is the correct answer.

Additional information: Trigonometric functions are also called Circular functions. Trigonometric functions are the functions that relate an angle of a right angled triangle to the ratio of two side lengths. There are 66trigonometric functions, namely: sin(x)\sin (x),cos(x)\cos (x),tan(x)\tan (x),cosec(x)\cos ec(x),sec(x)\sec (x)and cot(x)\cot \left( x \right) . Also, cosec(x)\cos ec(x) ,sec(x)\sec (x)and cot(x)\cot \left( x \right)are the reciprocals of sin(x)\sin (x),cos(x)\cos (x)andtan(x)\tan (x) respectively.

Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart such as: sin2x=2sinxcosx\sin 2x = 2\sin x\cos x and cos(x+π)=cosx\cos \left( {x + \pi } \right) = - \cos x. We can convert any given trigonometric function using the trigonometric identities and formulae. One should know the double angle formula of sine to tackle the problem. We should take care of the calculations while solving such questions.